Kõiki kaasava elukeskkonna kavandamine & loomine
Kõiki kaasava elukeskkonna kavandamine & loomine

Tellija • Astangu Kutserehabilitatsiooni Keskus

Koostajad • Eesti Arhitektide Liit, Eesti Disainikeskus, Eesti Kunstiakadeemia

Autorid • Valeri Falkenberg, Daniel Kotsjuba, Pille-Riika Lepik, Andres Levald, Margit Lillemaa, Ivar Lubjak, Hille Maas, Ruth-Helene Melioranski, Alo Mikola, Kristiina Peetsalu, Maria Pukk, Kristi Rummel, Tüüne-Kristin Vaikla, Veronika Valk

Meeskond • Dago Antov, Pille Epner, Teet-Andrus Köiv, Liina Laineveer, Auli Lõoke, Lylian Meister, Rein Munter, Kristjan Mändmaa, Martin Pärn, Diana Tamm, Toomas Tamms, Ingrid Mald-Villand

Toimetajad • Andres Levald, Ruth-Helene Melioranski, Veronika Valk

Peegeldusgrupp • Mare Abner, Karin Bachmann, Meelis Joost, Tiina Kalevik, Urmas Kaldaru, Thea Laidvere, Margus Leis, Kerttu Märtin, Riina Ohov, Kalle Pabut, Liis Palumets, Laila Põdra, Sven Reemet, Artur Räpp, Kristiina Sipelgas, Triin Talk

Kujundajad • Kristi Rummel, Daniel Kotsjuba

Kirjatüübid • Tiresias LPfont, PMN Caecilia

Illustratsioonid ja skeemid • Kristi Rummel, Daniel Kotsjuba

Fotod • Valeri Falkenberg, Andres Levald, Tiina Levald, Ivar Lubjak, Ruth-Helene Melioranski, Maria Pukk, Tüüne-Kristin Vaikla

Keeletoimetaja • Tiina-Ann Lias

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Sotsiaalne disain</td>
<td>322</td>
</tr>
<tr>
<td>9.5</td>
<td>Disainimeetodid ja tööriistad</td>
<td>324</td>
</tr>
<tr>
<td>9.6</td>
<td>Kaasava disaini tasuvus</td>
<td>328</td>
</tr>
<tr>
<td>9.7</td>
<td>Standardid</td>
<td>330</td>
</tr>
<tr>
<td>9.8</td>
<td>Bibliograafia</td>
<td>331</td>
</tr>
<tr>
<td>10</td>
<td>Abivahendid elukeskkonna hindamiseks</td>
<td>333</td>
</tr>
<tr>
<td>10.1</td>
<td>Kontrollnimekiri</td>
<td>335</td>
</tr>
<tr>
<td>10.2</td>
<td>Kasutaja teekaart</td>
<td>336</td>
</tr>
<tr>
<td>11</td>
<td>Kokkuvõte</td>
<td>339</td>
</tr>
<tr>
<td>12</td>
<td>Lisad</td>
<td>342</td>
</tr>
</tbody>
</table>
1. Sissejuhatus

Kuigi avalik arvamus kipub piiratud liikumisvabadust seotatuna väga väikese inimrühma, puudutab see tegelikult palju rohkem. Keskkonnakohanduste abil või, veelgi parem, ligipääsetavuse ja kaasamise printsiipide järgmisega juba keskkonna planeerimisfaasist muutub meie kõigi, mitte ainult liikumisraskustega inimeste liikumine mugavamaks, tervislikumaks ning kvaliteetsemaks.


Eesti Arhitektide Liit, Eesti Disainikeskus ja Eesti Kunstiakademia peavad sellise juhendmaterjali kogumi tellimist Astangu Kutserhabilitatsiooni Keskuse poolt erakordselt oluliseks sammus Eesti avaliku ruumi kujundamise printsipide täiendamisel. Oleme olukorras, kus Eesti rahvastik vananeb sarnaselt kogu maailma vanusega ja seni on meie ühiskonna erivajadustega inimeste probleemidele äärmiselt vähe tähelepanu pööratud.

Loodame, et valminud juhendmaterjal aitab täita suurt tühimmiku keskkonnakujundajate tööalal. Teise lähte kohana tuleb välja tuua, et tänapäevad keskkonna tellijate, ehitajate, aga ka arhitektide, disainerite ja projekteerijate erialane ettevalmistus on katnud käsitletavad teemat vähesel määral, kui tegelik tänapäeva elukvaliteet nõuab. Probleemi olulises motiveeris koonduma kolm Eesti selle valdkonna arendamise eest vastutavat institutsiooni, kes moodustasid eriala spetsialistidest laiapõhjalise meeskonna käesoleva juhendmaterjali koostamiseks.

Kaasava elukeskkonna juhendmaterjal 6 Sissejuhatus
Juhendmaterjali koostamise muutis väga mahukaks selle suunatus väga erineva tausta ja eelteadmistega spetsialistidele – arendajad, ehitajad, kohaliku omavalitsuse spetsialistid, arhitektid, disainerid jne. Loodud praktilise juhendmaterjali eesmärk on anda universaalse disaini põhimõtete abil vastuseid ja rakendusvõimalusi kõigile nimetatud keskkonna kujundamises osalevatele spetsialistidele. Juhendmaterjal pakub selleks inspiratsiooni ning lahendusi erinevate probleemide ja tutvustab eri inimgruppide vajadusi arvestava elukeskkonna kavandamise ja rajamise praktilist tä依次.

Juhendmaterjali koostamisel lähtutis eeskätt kahest peamisest printsiiibist: universaalne või kaasav disain (ingl. keeltes vastavalt universal design ja inclusive design) ja kasutajakeskne disain (user-centred design). Universaalne ja kaasava disaini rakendamise eesmärk on saavutada tulemus, kus on arvestatud võimalikult paljudele inimestele ligipääsetavate keskkondade loomist. Kaasava disaini printsiiib puhul on lisaks ligipääsetavusele eriti oluline ka erinevate sotsiaalsete inimgruppide kaasamine ühiskondlikku ellu.

Kasutajakeskne lähememine tagab probleemide vaadel-davuse inimkeskselt, mitte valmis objekti keskselt. See-tõttu annab juhendmaterjal ka ülevaate äärmuslikemates võimetes ja soovitustest. Juhendmaterjali koostades peeti oluliseks erivajadustega inimeste probleemide kirjeldamist eraldi keskkonna lahendustest. See peaks inspireerima võimalike lahenduste paljususele, mida loomingulisel kollektiivil saaks kasutada vastavalt loodava keskkonna vajadustele ja funktsioonidele.

Valminud materjal kuulub Astangu Kutse Rehabilitatsiooni Keskusele, kelle huvides on seda levitada nii laialt kui võimalik. Arvestades valdkonna eripära, arendatavaid tehnoloogiad, materjale ja tooteid ning ka ajakohast seadusandust, on meeskond veendunud, et juhendmaterjal vajab jooksvat täiendamist. Koostöös tellijaga loodame materjali järgnevalt vastavalt vajadusele ka uuendada.
JUHENDMATERJALI KOOSTAMISE METOODIKA

Juhendmaterjali koostamiseks teostati erineva füüsilise ja vaimse suutlikkusega inimgruppide uuring, et täpsustada juhendmaterjali ulatus ning fookused.

Uuringu otsesed eesmärgid:

1. Defineerida erivajadustega inimeste profilid, millele juhendmaterjal keskendub.
2. Kaardistada erivajadustega inimeste probleemid ja kitsaskohad tänapäeva Eesti avalikus ruumis toimetulekul.

Uuringu meetodid
Uuringus rakendatakse kaasava disaini printsiipi, et tagada võimalikult paljude inimgruppide vajadustele vastavalt kujundatud ning võrdseid võimalusi pakkuvat elukeskkonna, mis innustab ühiskonna liikmeid olema aktiivsed keskkonna kasutajad ning ühiskonnalust osavõtjad.

Kasutajakeskne lähenemine tagab probleemide vaadeldavuse inimkeskselt, mitte valmis objekti keskselt ning lisab juhendmaterjali sisule ülevaate erivajadustega inimeste võimetest ja suutlikkusest.

Olemasoleva materjali analüüs
- Eestis kehtivate normide ja määruste kaardistamine ja struktureerimine;
- teiste riikide kogemuste kaardistamine ja analüüs;
- Eestis olemasolevate lahenduste kaardistamine ja analüüs;
- erialase kirjanduse sisuanalüüs.

Kvalitatiivsed intervjuud
- sihtgrupi esindajatega;
- ekspertidega;
- fookusgrupiga.

Interjueud salvestati ning transkribeeriti info töötlemiseks.

Vaatlused: sihtgrupi toimetulek keskkonnas
Sihtrupi jäljimine eri keskkondades ja tegevustes nii koos salvestusvahendiga kui ilma.

Kuasaava elukeskkonna juhendmaterjal

Kaasava elukeskkonna juhendmaterjal 8 Sissejuhatus
Uuringu andmeid analüüsides otsustati kasutada teema inimlikumisest persoonasid ehk näidiskasutajaid samastumisvõimaluste ja empaatia tekitamiseks juhendmaterjali kasutajate hulgas. Välja töötati kuus persoonat, kes esindavad erinevaid kasutajate sihtrühmi. Uuringu raames kogutud teave ja tulemused on väga mahukad ning kokkuhoiud huvides ei ole kõike käesolevale materjaliile lisatud.

2. Mõttesuunad ja ülddefinitsoonid
Kaasav disain (ingl inclusive design; kasutusel ka analoogse tähendusega terminid universaalne disain universal design, disain kõigile design for all) ei ole oma olemuselt uus disainivaldkond ega eraldi disaini eriala, vaid spetsiaalne lähenemisviis kujundamisele ja projekteerimisele, kus loojad võtavad arvesse võimalikult laia kasutajategrupi vajadusi ja huve, olenemata kasutaja east või võimetest. Tegemist on laiatarbekaubade, keskkondade, hoonete ja teenuste disainiga, mille tulemus on ilma kohandusteta kasutatav ja ligipääsetav nii paljudele inimestele kui võimalik ja mõistlik. Rahuldades nii nende inimeste vajadusi, kellele toote või keskkonna kasutamine oli probleemne või võimatu, parandab kaasav disain kasutuskogemust ka kõigil teistel. Lihtsustatult öeldes on kaasav disain parem disain.

Kaasava disaini rakendamise peamine eesmärk on tagada teistega võrdsed võimalused ning võrdsne ühiskonnas osalemine neile inimestele, kes on piiratud toimetulekuvõimega, eemaldades olemasolevad tõkked ning takistades uute tõkete tekkimist. Möiste universaalne disain kätkeb endas uut laadi mõtlemist, kuna esitab võrdsete võimaluste osas kõrgemaid nõudmisi, kui seda on alanenud toimetulekuvõimega isikute suhtes rakendatav ligipääsetavuse mõiste. Kui puudega inimestele on ligipääsetavuse küsimust võimalik lahendada erimeetete, siis kaasava disaini puhul peab lahendus vastama kõikide kasutajate vajadustele. Disaini või kujundamise all peetakse silmas kõikide keskkonna kujundamisega seotud tööprotsesside ühist nimetajat. Siia alla käib ühiskonna planeerimine, ruumiline planeerimine, arhitektuur, ehitus, tootearendus ja nii edasi.


Kaasav disain ei ole lihtsalt tööetapp, mida saaks lisada disainiprotsessile, ega ühe spetsiifilise oskuse või võimekuse vähenemise kompenseerimine. Philipsi 2004. aastal teostatud uuring tõi välja, et kahel kolmandikul elanikkonnast on raskusi tehnoloogiliste toodete kasutamisel. Tehnoloogiate toote kasutamine oli lihtne vaid kolmandikule kõigist 1500st uuritust, liigagi paljudes tekitas see frustratsiooni või toote kasutamine põhjendamatult keeruline. Kaasav disain on süsteemne ja terviklik lähenemine kogu kujundus- ja arendusprotsessile läbi väga laia kasutajateringi vajaduste arvestamise ning selle tulemusel on ihaldusväärsed ja rahuldust pakkuvad laiatarbekaubad.

Kaasava disaini arengu algfaasiks võib pidada eelmise sajandi keskpaigas tekkinud takistustevaba (barrier-free) ning ligipääsetava (accessible) ehitise või keskkonna projekteerimise nõudeid. Tänaseks on mõistetud, et ainult ligipääsust jääb vähem ning oluline on teenuse tarbimine ning ühiskonnaelus osalemise tagamine. Seetõttu on ka eestikeelse mõistena kaasav disain märksa paremini eesmärke kattev.

Kaasava disainiga paralleelselt on arenenud disainimeetod kasutajakeske disain (user-centred design), mille keskmes on inimene ehk kasutaja uue idee arendamisfaasist kuni toote utiliseerimiseni. Kuigi selle meetodi puhul on fookus inimestel, arvestatakse arendusprotsessi raames ka teisi näitajaid, nt majanduslikke, tehnoloogilisi jne. Kasutajakeskel ja kaasaval disainil on mitmeid omavahel kattuvaid eesmärke ja väljundeid, mistõttu tutvustab käesoleva juhendmaterjali disainimeetodite peatükk kaasava disainiga haakuvaid teemasid täpsemalt.
Kaasav elukeskkond peab järgima järgmisi printsiipe:

- **austus** – keskkond peab austama kõiki erinevaid kasutajaid, keegi ei tohi tunda end väljajäetuna ning kõigil peab olema sellele ligipääs;

- **turvalisus** – ligipääsetav keskkond peab olema riskivaba kõigile kasutajatele; kõik elemendid, misest keskkond koosneb, peavad arvestama eelkõige ohutust (libisemisvastased põrandad, ei ole hõlpsasti eralduvaid elemente jne);

- **tervislikkus** – keskkond peab propageerima tervislikku eluviisi ja kasutust ning ei tohi olla ohuks kellegi tervisele ega põhjustada probleeme tervisehädadega kasutajatele, nt allergikutele;

- **funktsionaalsus** – keskkonna esmame funktsioon peab olema tarbitav kõigi poolt ilma probleemideta;

- **arusaadavus** – kõik kasutajad peavad suutma orienteeruda keskkonnas ilma suurema pingutuseta, seetõttu peab informatsioon olema selge ja asjakohaselt paigutatud;

- **ilu** – kaunist keskkonda on alati parem kasutada.⁴

Et saavutada kaasava keskkonna kujundamisel parimaid tulemusi, rõhutatakse seitsme faktori rakendamise olulisust:

1. otsustajate kaasatus;
2. koordineerimine ja järjepidevus;
3. võrgustumine ja kogukondade kaasatus;
4. strateegiline planeerimine;
5. teadmiste ja oskuste juhtimine;
6. ressursid;
7. kommunikatsioon ja turundus.

Kõigil neil seitsmel elemendil on tähtis individuaalne roll, kuid ellu rakendades on nad tihedalt üksteisega läbi põimunud.⁴

Paljudes valdkondades toetab kaasav disain teisi eesmärke ühiskonnas. Esile võib tuua järkusuutliku arengu, keskkonna- kusisted, kultuurilise mitmekesisuse, kasutusturvalisuse ja tuleohutuse, esteetikakusised jms. Tuleb püüelda selle poole, et kõik need ühiskonna vajadused saaksid toimida koosmõjus kaasava disainiga. Kaasav disain toetab järkusuutlikku arengut eelkõige järkusuutlikkuse sotsiaalse mõõtme
kaudu. Esteetiline pool on väga oluline muutmaks tooted ja keskkonna atraktiivseks ning aitab omakorda kaasa sellele, et ligipääsetavust ning kasutajasõbralikkus oleksid pakutavates lahendustes tavaliseks nähtuseks.

Universaalne disain on strateegia, mis eeldab, et planeerimisprotsessis, tugitegevuses, elluviimises ja järelhinnangus lähtutakse erialaülesuse põhimõttest. Hea kaasamine on väga oluline, et suuta haarrata erinevaid kasutajaid, on ju kaasamine ühiskonna demokraatlike protsesside üheks olulisemaks eesmärgiks. Universaalne disain ei tohi enesega alati kaasa uusi tööprotsesse, kuid eeldab kasutajate esindusorganisatsioonide laialdast osalemist ning erinevate kasutajate kogemuse arvestamist.


Eestis puudub otseselt kaasaava disaini rakendamisele keskkendunud seadus ja ligipääsetavust ning ühiskonnaellu kaasatust reguleeritakse süsteemsemalt erinevate seaduste ja määruste abil. Teatud mõtted on selline lähemenemine õigustatud, sest nii on teema kaetud eri valdkondade lõikes, kuid samas on olukord, kus ükskõike seaduste loomisel on jäänud sihtgrupi vajadused täielikult arvestamata. Käesoleva juhendmaterjali temaamilistes peatükkides on viidatud ka Eestis kehtivatele seadustele, määrustele ja normidele, järgnevalt vaid lühiülevaade.


Kaasava elukeskkonna juhendmaterjal 14 Mõttesuunad ja ülddefinitsioonid
See dokument on otseselt sõnastatud kui projekteerimis-nõuded ühele kindlale sihtgrupile, kelleks antud juhul on liikumis-, nägemis- ja kuulmispuudega inimesed. Käesolev juhendmaterjal seab seevastu eesmärgiks projekteerimisnormide sidususe kogu projekteerimise ja planeerimistegevuse lõikes, nii et projektide koostamisel arvestataks maksimaalse osa ühiskonnaliikmete vajadusi.

Lisaks nimetatud dokumendile mõjutavad elukeskkonna kujunemist Eestis oluliselt ka ehitiste tervisekaitse- ja ohutusnõuded, soovituslikud standardid akustikale, toodetele, linna-tänavatele jpm.

Mõned näited:
- Ehitusseadus[6]
- Elamuseadus[7]
- Muinsuskaitseseadus[8]
- Koolielise tuleasutuse seadus[9]
- Tervisekaitse nõuded kooli päevakavale ja õppekorraldusele[11]
- Tervisekaitse nõuded töötulastulemisele koolielises lasteasutuses ja koolis[12]
- Tuleasutuse seadus[13]
- Ehitiste ja selle osale esitatavad tuleasutusnõuded[14]
- Rahvatervise seadus[15]
- “Ehitiste heliisolatsiooninõuded. Kaitse müra eest”; Eesti projekteerimisnormid EPN 16.1 (eelnõu); välja antud märtsis 1999[16]
- Teeseadus[17]
- Ühistranspordiseadus[18]
- Linnatännavad, ET-1 0315-0216-0219[19]
- Toote ja teenuse ohutuse seadus[20]
- Erivajadusega isikute kutseõppeasutuses õppimise tingimused ja kord[21]
Loetletud normatiivid ei ole koostatud kaasava disaini spetsiifikat silmas pidades, mistõttu on vaja luua ühtne ja sidus, seadusandlusülene arusaam kõiki kaasava elukeskkonna kavandamise olemusest, eesmärkidest ja moodustest. Ometi on olemasolevas seadusandluses pidepunkte, mida kõiki kaasava elukeskkonna tellijatel, projekteerijatel ja haldajatel on igapäevases töös võimalik universaalse disaini põhimõtteid silmas pidades rakendada.

Lisaks ligipääsetavusele tuleb väga oluliseks pidada ka hoones pakutava teenuse kättesaadavust ja kvaliteeti.

Eriregulatsioone teenuste kohta:

- Tervisekaitstenõuded asenduskoduteenusele
- Tervisekaitstenõuded ujulatele, basseinidele ja veekeskustele
- Tervisekaitstenõuded lapsehoiuteenusele
- Tervisekaitstenõuded ilu- ja isiku teenuste osutamisele
- Tervishoiuteenuste korraldamise seadus

Puuetega inimesed reisivad aasta-aastalt järjest rohkem ning seetõttu on oluline nii ligipääsetavus kui ka sellekohase info (majutuse, transpordi, kultuuriväärtuste jmt kohta) kättesaadavus.

Ehitusmäärus nr 14 § 9 nõuab, et linnaplaanidel ja -skeemidel, reisijuhtides, transpordiskeemidel ja -teatmikes oleks ära näidatud ehituslike takistustega või takistusteta alad ja hooned (hotellid, muuseumid, teatrid, kinod, muud ühiskasutavad asutused ja objektid, parkimisvõimalused) ning ratastoolikalasutajatele kohaldatud ühissöidukite liiklusruudud.


2.1. Ülevaade teiste riikide praktikast


**Norra**

Norras on kaasava disaini põhimõtete juurutamisega tegutseminud kaua ja põhjalikult, mistõttu on ta tõusnud eeskujuks teistelegi riikidele. Norras on seatud eesmärgiks rakendada aastaks 2025 universaalse disaini põhimõtteid läbivalt kogu ühiskonnas. Eesmärk on seotud ka teiste valdkondade strateegiate ja seadusandlusega transpordi arengukavast kuni kohalike kogukondade arendamise programmimaa piirkondades.


**Rootsi**


**Soome**


Et kohalike omavalitsuste lokaalsed arhitektuuripoliitikad lähevad kohati väga detailseks, on nende rakendamise järele-valve just kohalike otsustajate ja ametnike käes. Kohalikul tasandil on ka mugavam selliseid arhitektuuripoliitikaid ajas jätkuvalt täiendada ja parandada ning muutuvatele sotsiaal-majanduslikele oludele kohandada.

**Prantsusmaa**

Prantsusmaa arhitektuuripoliitika suunad viitavad keskkonnahariduse osatähtsusele igal tasandil. Eli liikmesriikide võrdlev analüüs (Prantsusmaa võrdluses Soome, Poola, Itaalia, Norra, Austria ja Suurbritanniaga) toob esile organisatsioonidevahelise koostöömudeli võimalused keskkonnahariduse edendamiseks. Esile toodud teemad, mis on keskkonnateadlikkus edendamisel olulised – keha ruumis, elukeskkond ja loodus, ökoloogia, tehnoloogia, kodanikuks olemine ja esteetiline mõõde – on lahti seletatavad ka kaasava disaini põhimõtete abil.

**Austria**


Arhitektuuripoliitika abil tagatakse, et näiteks avaliku sektori poolt rajatavad hooned, hallatava territoriumi arendusprojektid ja olemasoleva kinnisvara hooldamine vastavad elanikkonna ehk kasutajate vajadustele. Erilise tähelepanu all on rahaliste ressursside piiratuse puhul kõik riigihangetesse puutuv.

**Horvaatia**

Horvaatia arhitektuuripoliitika eesmärgiks on olla pidevalt areneva protsessiga tõukejõuks, mis tagab avaliku ruumi sotsiaalse sidususe, välvides selle eksklusiivseks, kommertslikuks ja privaatseks muutumist. Rõhutatakse, et kaasavad esteetilised nõuded elukeskkonnale peavad olema kooskõlas lokaalsete väärustega. Arhitektuuripoliitika seab...
kriteeriumid, mille alusel elukeskkonda, mh hooneid, kavandatud turvaliste ja tervistavate. Arhitektuuripoliitikat loetakse instrumendiks, mille abil saab muuta elukeskkonna kasutamise kohalikule elanikkonnale mugavaks, aidates selle läbi kaasa elanikkonna püsimisele maapiirkondades.

Hispaania

Ameerika Ühendriigid

Argentiina
Argentiinas on avaliku ruumi projekteerimise abimaaterjalis Plan Nacional de Accesibilidad y Turismo[38] (Riiklik Ligipääsetavuse ja Turismi Arengukava), mis hõlmab lisaks avaliku linnaruumi praktikatele ka turismi, käsitledes täpsustavalt maastikke/rahvusparke ning ranna-ala.

Tšiili

Eesti võiks näiteks Norra eeskujul oma riiklikus arhitektuuri- ja disainipoliitikas lähtuda võrdõiguslikkuse põhimõttetest ning teravdada tähelepanu elukeskkonna ligipääsetavuse tagamisele: alustuseks avalike hoonete ja ühiskondlikult kasutatava (linna)maastiku juures, laiendades rakendusala samm-sammult kogu ehitatavale keskkonnale.

Samu reegleid tuleb läbivalt järgida ka taristu, eeskätt transpordivõrgu terviklikul kohandamisel ja arendamisel kogu sektori ulatuses. Elukeskkonna kui kultuuripärandi hoidmisel ja arendamisel täna ja homme on vaja toetuda nii kohalikule kui ka rahvusvahelisele kogemusele ning näha ette tulevikustsenaariume, mis aitavad meil elujõulise ühiskonnana muutustega kohaneda.

Kokkuvõttes võib soovitada arhitektuurikomisjonide tava jätkumist nii, et kohalike omavalitsuste otsustajad, kes on seotud ehitussektoris toimiva koordineerimisega, läbiksid kaasa disaini põhimõttete alase täiendkoolituse. Seejärel suudaksid nad tagada vastavate põhimõttete rakendamise kõiki kaasa disaini elukeskkonna kavandamisel ja loomisel.

Samuti on vajalik vastavad koolitused läbi viia ehitusjuhtide ja teiste erialaspetsialistide seas nii, et kaasa disaini põhimõttete järgimine linnaarhitektuuris ja arhitektuuris projekteerimises muutuks loomulikuks praktikaks. Kaasa disaini suunised, kogemused ja praktika tuleks viia õppejõududeni ja integreerida need teadmised õppekavadesse nii üld-, kutse kui ka kõrghariduse tasandil.
2.2. Bibliograafia


43. JIS X8341, the Japanese Industrial Standards Committee (JISC), 2004 (rev 2009).


3. Elukeskkonna erinevad kasutajad
Keskkondi, teenuseid ja tooteid planeerides, arendades ning disainides on oluline meeles pidada, et loodava keskkonna või teenuse tarbijad ning kasutajad on üksikisikud, kes erinevad üksteisest oma teadmiste, oskuste, võimete, mõõtude ning kehakuju poolest.

Avalike teenuste ja keskkondade loomise levinud praktika lähtub aga suurtest üldistustest, mistõttu liiga paljudel ühiskonna liikmetel on raskusi ka kõige lihtsamate teenuste tarbimisel või on need täiesti kättesaamatuks kujundatud. Statistikast ilmneb, et valdav osa elanikkonnast vajab või saaks paremini hakkama kaasava disaini printsipidel kujundatud tooteid ja teenuseid kasutades.

Käesolevas peatükis kirjeldame erinevate kasutajagruppide spetsiifikaid ning neist tulenevaid vajadusi, et aidata nii kujundustööde tellijaid kui kujundajaid arvestada võimalikult paljusid kasutajagruppe teenuste ja keskkondade planeerimisfasist alates.


Neid arve kõrveltades näeme, et kõigil ühiskonnaliikmetel tuleb arvestada mitme eluaastaga, mil nende elukvaliteet varasemaga võrreldes oluliselt halveneb. Seda olukorda saab märkimisväärsetelt leevendada mitte ainult meditsiini kaasates, vaid rakendades nii erinevaid abivahendeid kui ka kohandades keskkondi ja teenuseid-tooteid vananemisega kaasnevatel eripäradelt.

<table>
<thead>
<tr>
<th>Naised</th>
<th>Mehed</th>
<th>Naiste edumaa</th>
<th>Keskmine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eesti</td>
<td>70,6</td>
<td>61,3</td>
<td>9,3</td>
</tr>
<tr>
<td>MTO Euroopa</td>
<td>70</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>Maailm</td>
<td>61</td>
<td>58</td>
<td>3</td>
</tr>
</tbody>
</table>

**Tervena elatud elu (aastates), 2007.[3]**

Seega võib kindlalt väita, et vananevate ühiskonnaliikmete sobivaks kujundatud keskkond pole üksnes kõigile mugavam kasutada nende tervele elatud aastate jooksul, vaid väga suure tõenäosusega vajavad need kohandusid kõik inimesed oma elu lõpuastetel iseseisvamaks toimetulekuks.
Kujundustöid planeerides on oluline arvesse võtta ka oma võimet ja mõõtude poolest keskmisest erinevaid ühiskonna-liikmeid. Neist suurima grupi moodustavad lapsed, keda Statistikaameti andmete kohaselt elab Eestis üle kahesaja nelja tuhande (kuni neljateistastele), mis teeb kokku 15,5% kogu elanikkonnast.\[2\]

<table>
<thead>
<tr>
<th>Vanus</th>
<th>Eesti mehed</th>
<th>Eesti naised</th>
<th>Eesti kokku</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10-14</td>
<td>20,000</td>
<td>20,000</td>
<td>40,000</td>
</tr>
<tr>
<td>20-24</td>
<td>60,000</td>
<td>60,000</td>
<td>120,000</td>
</tr>
<tr>
<td>30-34</td>
<td>80,000</td>
<td>80,000</td>
<td>160,000</td>
</tr>
<tr>
<td>40-44</td>
<td>80,000</td>
<td>80,000</td>
<td>160,000</td>
</tr>
<tr>
<td>50-54</td>
<td>60,000</td>
<td>60,000</td>
<td>120,000</td>
</tr>
<tr>
<td>60-64</td>
<td>40,000</td>
<td>40,000</td>
<td>80,000</td>
</tr>
<tr>
<td>70-74</td>
<td>20,000</td>
<td>20,000</td>
<td>40,000</td>
</tr>
<tr>
<td>80-84</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Eesti rahvastiku soo- ja vanuskoosseis, 1. jaanuar 2011 Eesti Statistikaameti andmetel.\[4\]

Loomulikult ei tarbi valdav osa eelkooliealistest lastest avalikke teenuseid iseseisvalt, kuid paljud teenused on siiski suunatud otse neile (nt lasteaiad, mänguväljakud jmt). Samuti on lapsed aktiivsed ühiskonnaliikmed koos oma perekonnaga, mistõttu muutub lastele kättesaamatu teenus või raskesti lábitav keskkond probleemseks kogu perekonnale. Seega on tegemist väga arvestatava hulga keskkonna kasutajatega, kelle vajadusi ignoreerides teikivad igapäevaelus hakkamasamisel mitmesugused häired, mille leevendamiseks peab teenuseosutaja tegema lisakulutusi.


Peamine vastuseis kaasava elukeskkonna kujundamise printsipide kasutuselevõtaks avalike keskkondade kujundamisel on oinud põhjendus, et sihtgrupp on liiga väike. Kui lapsed ja vanurid moodustavad elanikkonnast üle kolmandiku ning neile lisanduvad puudega inimesed ja lastega perede teised liikmed, kelle igapäevaelus Häirivad suuremal või vähemal määral ligipäästmatud keskkonnad, on tegu probleemist mõõdavaatamisega ning tõelise vajaduse mitte-tunnistamisega. Ning elanikkond järjest vananeb...
Teine oluline kaasava disaini tõukejõud on suurema tähelepanu pööramine puudega inimestele ning soov neid enam ühiskondlikku ellu kaasa tõmmata. “Aasta-aastalt on puuetega inimeste arv kasvanud. Puuetega inimesi, kellel on määratud puude raskusaste, oli Eestis 2009. aasta alguse seisuga üle 118 000 isiku, moodustades 8,8% rahvastikust. Valdavalt on tegemist eakate inimestega – 59% kõigist puuetega inimestest on 63-aastased ja vanemad, pisut üle kolmandiku, ehk 35% tööealised ning 6% olid vanuses 0–17 aastat”.[5]

2012. aasta 1. jaanuari seisuga oli Eestis määratud puue 133441 inimesele.[6]

<table>
<thead>
<tr>
<th>Puude liik</th>
<th>0–6</th>
<th>7–15</th>
<th>16–17</th>
<th>18–24</th>
<th>25–29</th>
<th>30–34</th>
<th>35 39</th>
<th>40 44</th>
<th>45 49</th>
<th>50 54</th>
<th>55 59</th>
<th>60 62</th>
<th>63–64</th>
<th>65+</th>
<th>Kokku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keele- ja kõnepuue</td>
<td>178</td>
<td>77</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>15</td>
<td>31</td>
<td>23</td>
<td>2</td>
<td>77</td>
<td>440</td>
</tr>
<tr>
<td>Kuulmispuue</td>
<td>90</td>
<td>162</td>
<td>24</td>
<td>159</td>
<td>95</td>
<td>67</td>
<td>81</td>
<td>93</td>
<td>129</td>
<td>129</td>
<td>172</td>
<td>93</td>
<td>49</td>
<td>654</td>
<td>1997</td>
</tr>
<tr>
<td>Liitpuue</td>
<td>846</td>
<td>1363</td>
<td>206</td>
<td>734</td>
<td>515</td>
<td>444</td>
<td>484</td>
<td>700</td>
<td>873</td>
<td>1449</td>
<td>2428</td>
<td>2016</td>
<td>1448</td>
<td>13589</td>
<td>27095</td>
</tr>
<tr>
<td>Muu</td>
<td>1287</td>
<td>2242</td>
<td>135</td>
<td>463</td>
<td>290</td>
<td>265</td>
<td>379</td>
<td>532</td>
<td>842</td>
<td>1418</td>
<td>2165</td>
<td>1714</td>
<td>1145</td>
<td>17114</td>
<td>29991</td>
</tr>
<tr>
<td>Nägemispuue</td>
<td>36</td>
<td>124</td>
<td>18</td>
<td>68</td>
<td>51</td>
<td>56</td>
<td>74</td>
<td>92</td>
<td>112</td>
<td>198</td>
<td>249</td>
<td>187</td>
<td>120</td>
<td>2264</td>
<td>3649</td>
</tr>
<tr>
<td>Psühikahäire</td>
<td>127</td>
<td>736</td>
<td>173</td>
<td>1126</td>
<td>1137</td>
<td>1219</td>
<td>1485</td>
<td>1783</td>
<td>2015</td>
<td>2573</td>
<td>2624</td>
<td>1394</td>
<td>640</td>
<td>4149</td>
<td>21181</td>
</tr>
<tr>
<td>Intellektipuue</td>
<td>33</td>
<td>240</td>
<td>93</td>
<td>518</td>
<td>425</td>
<td>417</td>
<td>366</td>
<td>286</td>
<td>262</td>
<td>228</td>
<td>263</td>
<td>106</td>
<td>45</td>
<td>333</td>
<td>3615</td>
</tr>
<tr>
<td>Kokku:</td>
<td>2896</td>
<td>5523</td>
<td>725</td>
<td>3400</td>
<td>2778</td>
<td>2785</td>
<td>3317</td>
<td>4171</td>
<td>5280</td>
<td>7997</td>
<td>11225</td>
<td>8144</td>
<td>5416</td>
<td>69784</td>
<td>133441</td>
</tr>
</tbody>
</table>

Puude liik psühikahäire sisaldab intellektipuuet kuni 2008 oktoober tehtud otsustes, edaspidi on intellektipuue näidatud eraldi puude liigina. Puude liik muu sisaldab liitpuuet kuni 2007 tehtud otsustes, edaspidi on liitpuue näidatud eraldi puude liigina.

Puudega isikute arv Eestis aastal 2011 puude liigi ja vanuse järgi.[6]
“Eesti sotsiaalpoliitika defineerib puude kui inimese anatoomilise, füsioloogilise või psüühilise struktuuri või funktsiooni kaotuse või kõrvalkalde, millest tingituna inimene võib vajada kõrvalabi, juhendamist, järelevalvet, erivahendide ja/või -tingimusi. Puude raskusastme määratmisel võetakse arvesse inimese terviseseisundit, tegevusvõimet, kõrvalabi, juhendamise ja järelevalve vajadust, elukeskkonda, puudest tingitud lisakulusid ning rehabilitatsiooniplaani olemasolul selles ettenähtud tegevusi.”[7][8]

“Puue on ajas muutuv ja mitmetahuline mõiste, mis esindab inimese ja teda ümbritseva keskkonna vahelist suhet. Inimene, kelle tegevusvõime teatud keskkonnas on piiratud, ei pruugi olla piiratud juhul, kui keskkonda on kohandatud või kui ta saab tegutseda mõnes teises keskkonnas.”[5]


“Puudeid võib jagada nägemis-, kuulmis-, kõne-, liikumis-, vaimse ja kognitiivse arengu puueteks, kusjuures iga eri klassi võib veel liigendada alljaotusteks puude raskusastmes tingitud tegevuspiirangute alusel, millest sõltuvad vajaminevad meetmed.”[8]

Vastavalt 54. Maailma Terviseassamblee otsusele on Maailma Terviseorganisatsiooni (MTO) liikmesriigid kohustatud oma teaduslikus uurimistöös, epidemioloogilises järelevalves ja aruandluses kasutama rahvusvahelisest funktsioneerimisvõime, vaeguste ja tervise klassifikatsiooni – RFK (International Classification of Functioning, Disability and Health – ICF).[10] RFK klassifikatsiooni alusel saab eristada tervisehäiretest tulenevaid funktsioneerimisvõime, keskkonnas tegutsemise ja ühiskonnas osaluse piiranguid ja inimese sooritusvõimet mõjutavaid keskkonnategureid.

3.1. Persoonad

Käesoleva juhendmaterjali koostamisel lõi uuringumeeskond erinevate kasutajagruppide analüüsi tulemusena kuus üldistatud omadustega personat ehk tüüppersonat, et saada inimkesksem vaade teekondade läbimise ja teenuste kasutamise analüüsimisel.

Juhendmaterjali loomisel analüüsis meeskond neid kuut persoonat kasutamas erinevaid teekondi ja teenuseid. Analüüsi raames tuvastati kõigi erinevate inimgruppide hakkama- saamine ning ootused sujuvaks, võimalikult iseseisvaks ning probleemivabaks toimetulekuks. Nimetatud analüüs on tehitud, kasutades spetsiaalselt antud konteksti tarbeks loodud tööriista Kasutaja teekaart.

Persoonade olemust ning loomise põhimõtteid on täpsemalt selgitatud disainimeetodite peatükis. Teekondade ja teenuste analüüsi tulemused on toodud keskkonna hindamise abivahendi peatükis.

Kaasava elukeskkonna juhendmaterjal 31 Elukeskkonna erinevad kasutajad
Reet
35-aastane koduperenaine.
3 lapse ema, üks laps kärus, üks lasteaias ning kolmas seitsemaastane, 1. klassi õpilane.


Kõige vanem laps läks just 1. klassi, keskmine, 4-aastane laps käib lasteaias ning kõige noorem, 4-kuune on kodune. Kõige noorema lapsega liikumiseks kasutab pere kolmeosalist käru: rattakomplekti, millele saab asetada nii turvahälli, vankrikorvi kui ka istumisaluse suuremale lapsele. Hetkel kasutatakse turvahälli ja vankrikorvi osa.

Elvi
83-aastane naispensionär.
Nõrgenenud nägemine, kerge kuulmislangus. Mäluprobleemid, aeglane reaktsioon.


Jelena
57-aastane vene emakeelega naisterahvas.
Ajutine liikumispuue pahkluumurru tõttu 2 kuud tagasi, liigub karkudega, jalg on kipsiga sirgesse asendisse fikseeritud.

Jelena on väiksemat kasvu keskmisest kogukam brünett naisterahvas. Tal on keskharidus ning eesti keelt ta ei valda. Sõprade ja pere seltis on ta rõõmsameelne ja abivalmis, kuid keelebarjääri ning liikumisprobleemide tõttu tunneb end väljaspool kodu liikudes tõrjutuna. Jelena elab koos abi-kasaga vanalinna kortermajas, korter on läbi kahe korruse. Ruumis liigub karkudega või mööblist kinni hoides.


Kaasava elukeskkonna juhendmaterjal

Elukeskkonna erinevad kasutajad
Eero
32-aastane mees.
Seljavigastusega ratastoolis liikuja, söidab ise autoga.

Eero on heledapäine suur ja tugev eesti mees. Tema varasemat positiivset eluhoiakut on kolm aastat tagasi kakluse käigus saadud seljavigastus tugevalt mõjutanud. Probleemid ühiskonna suhtumise ning ka iseseisvalt mitte hakkamasamisega on jätanud oma jälje.

Esimele aasta pärast vigastuse saamist möödus taastusnavat raviasutustes, teisel aastal kohandas oma elu ja elukeskkonna, nüüdseks on ta uue elukorraldusega niivööd-kuvööd harjunud. Elab koos perega ja perekond aitab. Peres kasvab 3 last, kellest 2 käivad koolis, üks lasteaias. Elab kortermaja teisel korrusel, kuhu päaseb trepistronijaga. Selle kasutamiseks vajab kaasinimese abi.


**Martin**

23-aastane meestudeng.
*Vaegnägija ajutise liikumispuudega (ratastoolis), liigub saatjaga.*


Kristiina
31-aastane õpetajanna.
Vaegnägija, liigub koera või valge kepiga.

Kristiina on tumedate juustega keskmist kasvu sale naiste-
rahvas. Alates 6. eluaastast pööb diabeeti, mille tulemusena
25-aastasena kaotas nägemise ja on hetkel praktiliselt pime.
Ta näeb häma ja tal on natuke valgusetaju. Peale nägemis-
puude on Kristiinal diabeedi tagajärjel ka lihaste ja kõõluste
kärbumine, millest tulenevalt esineb ta ka tasakaaluhäireid
ja ta ei saa joosta. Hoolimata oma puudest on Kristiina elu-
rõõmus ning sotsiaalselt keskmiselt aktiivsem. Hariduselt
on Kristiina eesti floloog ning töötab eesti keele õpetaja ja
massöörina.

Tal on lisaks tööle ka mitmeid ühiskondlikke tegevusi, mis-
tõttu tavalisel päeval lahkub ta kodust hommikul kella 9–10
ajal ja jõuab tagasi õhtul kell 9–10. Hetkel on Kristiina kolimas
kortermajast suure aiga eramajja, kus ta elab koos vanemate
ja noorema vennaga. Tuttavas keskkonnas saab Kristiina
isesseisvalt pärast hästi hakkama. Väljaspool kodu liikumiseks
kasutab ta vastavalt võimalusele ja vajadusele valge kepī,
koera ja ka saatja abi. Selgeks õpitud teekonnad (näiteks tee-
kond kodust tööle) läbib Kristiina ka täiesti iseseisvalt, ilma
saatja abi kasutamata. Abivahenditest kasutab ta veel telefoni
köneprogrammiga ja arvutit könesüntesaatoriga. Linnas liiku-
miseks kasutab hea ilmaga ühistransporti (trammi ja bussi),
viletsa ilmaga on sunnitud kasutama taksonevest või isa
sõidutab teda autoga. Töövälisel ajal meeldib Kristiinal käia
sõpradeega kohvikus, teatris ja trennis.
3.2. Liikumispuue

Liikumist ja liikuvust, kaasa arvatud liigest, luude, reflek- side ja lihaste funktsioonid, on käsitletud RFK klassifikaatoris peatükis b7 "Närvide, lihaste, luustiku ja liikumisega seotud funktsioonid". Selles on toodud liigest, sh liigest liikumisulatuse ja -kerguse funktsioonid, lihasjõu, sh lihase ja lihasrühma kontraktsioonijõuga seotud funktsioonid, lihastooneuse funktsioonid, könnaku, sh köndimise, jooksmise ja muude kogu keha liikumisviisi funktsioonid, kaasa arvatud: köndimis- ja jooksmisviisid; sellised puude nagu spastiline könd, hemipleegiline könd, parapleegiline könd, asümmeetriiline könd, lonkamine ja jäik köndimisviis.

Liikumispuue hulka kuuluvad väga mitmesuguse iseloomu, raskusastme ja kestusega puuded: halvatused, nõrkused, liigutuste koordinatsioonihäired, amputatsioonid, pea- ja seljaaju traumdad, kaasasündinud lastehalvatus.

Omaette rühma moodustavad liikumispuueni viivad haigused, mille seast osa on progresseeruvad: multiplekskleroos, lihasdüstroofa, Alzheimei tõbi, artriti jne. Funktsionaalsete piirangutena on levinud iseseisvaks liikumise võimetus, mille puhul liikumiseks vajad on abivahend (kõnnivahend, elektriline või käsitse juhitav abivahend – ratastool, skuuter), koordinatsiooni- ja tasakaalu kõnd, lihaste nõrkus, spastili- sus, käe haaramisraskused.


1. jaanuari 2012 seisuga oli Eestis 45473 liikumispuudega isikut.
Tavaliselt arvestatakse projekteerimisel ratastooli kasutajatega, kuid paljud inimesed kasutavad abivahendina käimisraami, karke, küünarkeppe või lihtsalt jalutuskeppe. Kõigi nende kasutamisel suureneb ruumivajadus. Kui terve inimene vajab vabaks kõndimiseks 600 mm laiusega ruumi, siis kepiga liikumisel on miinimum 700 mm, karkudega 900 mm.

Avalikus ruumis liikumine on kipsi, ortoosi, karkude, ratastooli vms tõttu tavaliselt piiratud või raskendatud. Liikumisraskustega inimese liikumine võib olla ebakindel ja keeruline ka tavalise inimese jaoks märkamatu takistuse olemasolul, nagu ebatasane tee, libe teekate või tasapinade erinevus. Näiteks on ka käimisraami või karkude kasutajal väga raske ja ohtlik tõusta ning laskuda treppidest, suurematest kallakutest jne.

Eriti tähtis on pinnkatete ühtlane viimistlus nii sise- kui välisruumis ja talvel lume- ning jäätöörje, mis välistaks liistakuma tekke. Liikumispuudega inimesele on abiks kõik-võimalikud lisakäetoed treppidest tõusmisel ja laskumisel ning piisav istekohtade arv avalikes hoonetes ja linnaruumis.

Martini jaoks ligipääsetava laua minimaalsed mõõdud.
Eero ruumivajadus ringi pöörlemisel ja otse liikumisel.

Eero ruumivajadus takistusest möödumisel.

Eero haardeulatus.

Kaasava elukeskkonna juhendmaterjal 41

Elukeskkonna erinevad kasutajad
AJUTINE LIIKUMISPUUE


Sobiva keskkonna loomisel tuleb arvestada, et ajutise liikumispuudega inimene:

- vajab oma muutunud sooritusvõimega kohanemiseks aega;
- on uudses olukorras ega suuda seetõttu keskkonnamuutustele kiiresti reageerida;
- kasutab jalatrauma tõttu tihti liikumisel abivahendit (ratastool, käimisraam, kepp, kargud jne), liigub aeglasmalt ning tal on esemeid keeruline kätte saada;
- ei saa jalatrauma korral astuda kõrgetest astmetest üles ega alla;
- liigub käetrauma korral terve inimesega võrdsel kiirusel, kuid esemete puudutamine, kinnihoidmine, uste avamine jmt on häiritud.
3.3. Nägemispuue

Nägemispuue hõlmab mitmeid eriliike (nägemisteravuse langus, vaatevaljade ahenemine jpm), kuid väga laias laastus võime selle puuderühma jagada kaheks – vaegnägijad ja pimedad. Nendevaheline piir on muidugi tinglik, kuid näiteks USA-s defineeritakse pimedaks isik, kelle nägemine on halvem kui 20/200. Selline inimene näeb testi 20 jardi kauguselt sama selgelt kui terve nägemisega inimene sama eset 200 jardi kaguuselt. Eesti visuse märkimisviisi järgi tähendab see seda, et nägemisteravus on väiksem kui 0,1. Nägemisuudega kaasnevatest funktsionaalsetest häiretest võib mainida lisandunud peegeldusetundlikkust, tsentraalse/perifeerse nägemise häireid, pilgu fokuseerimisraskusi, halba pimedasnägemist, nõrka värvieristust jms. Pimedal inimesel võib olla säilinud võime eristada valgust ja varju (pimedust).

Maailma Tervise Organisatsiooni (World Health Organization) andmetel on maailmas nägemispuudega inimesi kokku ligikaudu 314 miljonit ning umbes 87% sellest arvust elab arengumaades. Umbes 45 miljonit inimest neist on pimedad. Enamik nägemisuudega inimestest on vanemaalised. Üle kogu maailma kuuluvad suuremas riskigruppi igas vanuses naised. Umbes 82% nägemisuudega inimestest on 50-aastased või vanemad (see vanusegrupp hõlmab umbes 19% tervest maailma rahvastikust).[13] Iga 5 sekundi jooksul kaotab üks inimene maailmas nägemise ja iga ühe minuti jooksul üks laps.[14]

Nägemine on esmatähtis protsess maailma tunnetamises, selle abil saab inimene ümbritsevas toimuvast kohta umbes 80% informatsioonist, mistõttu nägemise puudumine (pimedus) mõjutab tugevalt inimese igapäevast aktiivsust ja hakkamasaamist.

Nägemine aitab inimesel ringi liikuda ja orienteeruda keskkonnas ja ruumis, annab talle informatsiooni, mida ei saa anda teised analüsaatorid (kuulmine, puutetundlikkus). Arvestada tuleb ka ealisi iseärasusi, nimelt vajab eakas kolm korda suuremat valgustihedust sama nägemisülesande sooritamiseks kui noor.

**Eestis oli 2012. aasta 1. jaanuaril 3649 nägemispuudega inimest.**[6]
Nägemispuude olemus varieerub vastavalt indiviidile. Üldisest erinev silmanägemise seisund viitab järgmistele kahjustustele:

- piiratud vaateväli – puudub võimalus näha üles ja alla ning külgedele;
- tsentraalse vaatevälja mõningane kadu – võime näha ümbritsevat keskkonda detailselt on piiratud;
- tugev lühinägelikkus – maailmapildi nägemine lõputu häguna;
- silmamuna tahtmatu rütmiline võnkumine – suutmatus näha esemeid selgelt.

Erinevad nägemishäired.

Allikas: http://www.tiresias.org/about/publications/keeping_step/consumers.html
VAEGNÄGIJA LIIKUMINE

Tuttavas kohas liiguvad nii pime kui ka nägija vilunult, ainult pimeda liikumine on aeglasem, mõlemal aga harjumuspärane. Mis puutub aga käeliigutustesse, siis on see erinev: nägija liigutused on nägemise tõttu täpsemad, pime koordineerib liigutusi kompimise abil. Pimedal toimub üleminek kompimiselt liikumisele ja vastupidi aeglasemalt kui nägijal.


Nägemispuudega inimesed liiguvad tännavatel, kasutades orienteerumiseks könnitee servi. Orientiiri vajatakse otseteelt kõrvale, nt diagonaali, kaldumise vältimiseks. Mida kehven on nägemine, seda kõrgemat orientiiri vajatakse ning mida kehven on jalad, seda madalamat serva soovitakse.

**INFORMATSIOONI KÄTTESAADAVUS**

Orienteerumise ja teejuhiste kohta käiva informatsiooni käitumiseks tuleb tagada hea nähtavus ja kus vajalik, taktiilne märgistus. Paljud nägemispuudega inimesed on suutelised lugema silte, kui need on õigesti paigutatud, õige värvikontrastsuse, teksti suuruse ja kirjatüübiga ning mati viimistlusmaterjaliga.

Valgustugevus peaks olema ühtlane, piisavalt tugev ning ei tohi olla pimedlale. Jälgige on see tõhusaks abivahendiks piiratud nägemisega kasutajale, võimaldades tuvastada värvi- ja toonikontrastsust ja lugeda hea nähtavusega silte.

**Oluline informatsioon ümbritseva keskkonna kohta tuleks edasi anda lisaks visuaalsele viisile ka heliliselt ja taktiiliselt. Nõgemise puudumisega ei kaasne üldjuhul teiste meelde halvenemine ning seetõttu kasutavad nägemispuudega inimesed informatsiooni saamiseks suuremal määral teisi meeli, näiteks kompamist ja kuulmist.**

Liikudes jalakäijate alal, otsivad ja kasutavad nägemispuudega inimesed pidevalt jälge all olevat taktiilset informatsiooni, eriti tunnetatavat kontrasti pinna tekstuuris. Selle tunnetamise võime sõltub inimesest. Näiteks nägemispuudega vanuritel või diabeetikutel võib olla jalaaludab enamikku inimte kõrval tajutavad, kuid mitte teekonda ohustavad ega ebasuguvust tekitavad.

Mõned nägemispuudega inimesed, eriti valge kepi või koeraga liikujad, läbivad spetsiaalse liikumistreeningu. Üha enam sisaldab see treening ka aktiilise pinnakatte tõlgendamist.

Valgustukevus peaks olema ühtlane, piisavalt tugev ning ei tohi olla pimedlale. Jälgige on see tõhusaks abivahendiks piiratud nägemisega kasutajale, võimaldades tuvastada värvi- ja toonikontrastsust ja lugeda hea nähtavusega silte.

**Kaasava elukeskkonna juhendmaterjal 46**

**Elukeskkonna erinevad kasutajad**

*Täpsemalt käsitletud kommunikatsiooni peatüks*
reguleerimata könniteede ristumistel kasutatavad hoiatavad mummulised teekattematerjalid hästi kasutusele võetud.

Head on need ülekäigud, kus ei ole lihtsalt kaks plaati allami-nekuks kaldu asetatud, vaid ülekäik ongi madala servaga, seal saavad nii ratastooliinimesed kui vankriga ning valge kepiga ja koeraga liikujad aru, et neil on vabadus liikuda. Muidugi võiks ideaalised kõik rismikud ning ka ülekäigutähistused toimida hääl-piiksudega.[16]

Nõuded taktiilsetele teekatetele on vastavalt inimeste erivajadustele erinevad. Seetõttu on taktiilsete teekatete loomisel peale sihtrühma arvestatud ka teisi erivajadusi, nagu näiteks ratastoolikasutajaid ja liikumispuudega inimesi.[17] Taktiilseid lahendusi tutvustatakse põhjalikumalt [kommuni-katsiooni peatükis].
3.4. Kuulmispuue

RFK peatükis b240 on määratletud kuulmise ja tasakaalu-elundil funktsiooniga seonduvad aistingud:

- helide olemasolu ja nende paigutuse, kõrguse, tugevuse ja kvaliteeditajumisega seotud sensoorsed funktsioonid;
- helialliku kuulmise, akustilise eristamise ja lokaliseerimise, heli suuna tajumise ja kõne eristamise funktsioonid; sellised puudud nagu kurtus, vaegkuulmine või kuulmisnõrkus.[11]


MTO andmeil oli aastal 2005 maailmas umbes 278 000 000 inimest mõõduka kuni sügava kuulmispuudega. 80% neist elab madala ja keskmise sissetulekuga riikides. Näiteks Suurbritannias on üks seitsmest inimesest kuulmislangusega, aastaks 2014 prognoositakse suhtarvu üks neljale.


Personaalne kuulmisvõime võib varieeruda täielikust kurtusest kuni erakordselt terava kuulmiseni. Kuulmispuue võib olla kaasa sündinud või hilisema tekkega (haigused, önnetused, suure müraga töökeskkond, vananemine jne). Inimesel võib olla ka ajutiselt kuulmisraskusi, näiteks keegi räägitab vaikse häälega, ümbrisv kekk on mürarikas või vestluskaaslase köhe on kahjustatud.
Kurid kasutavad suhlemisel viipekeelt ning osavamad võivad luga teksti kõneleja huulilt. Viipekeele kasutajate puhul on oluline arvestada tõsiasja, et eesti keel on neile võõrkeel. Eesti kõnekeal nagu viipekeel on erinevus märkimisväärselt viipekeele grammist ning seetõttu võib viipekeele esimese keelena kõnelejatele eesti kõne keeljate olla keeruline või täiesti arusaamatu.


Tulenevalt kuulmispuudega inimeste vajadusest on planeerimisel tähtis, et kogu oluline inforimatsiooni edastatakse visuaalselt. Võimalus jälgida igapäevaseid esemete, nt faksiaparaatide, paljundusmasinate toimimist visuaalselt aitab kuulmispuudega inimestel nendega tegutseda. Hästi organiseeritud ja müravaba ruum on osa heast disainist.

Sobiva keskkonna loomisel tuleb arvestada, et kuulmispuudega inimene:

- vajab kogu infot visuaalselt;
- saab avalikus ruumis paremini hakkama, kui muusika pois;
- värskemik on täiendav kui täiskasvanud terve inimene;
- orienteerub aeglasemalt kui tavainimene, kes kuuleb enne, kui näeb.
3.5. Intellektipuue

Intellektipuue ei ole haigus. See on eelkõige inimese intellektuaalsete võimete kahjustus, halvenemine, mitte aga tema muude iseloomulike oskuste kahjustumine, näiteks vöime rõõmustada või end hästi tunda. Intellektipuudega inimesed vajavad tihti palju abi ja tuge. Neil on teistega võrreldes raskem uusi teadmisi omandada ning varemõpitut uutes olukordades kasutada. Toetuse ja õpetamise abil saavad paljud intellektipuudega inimesed õppida elama elu, mis on nende vajadustega kooskõlas ja sarnaneb suuresti puudeta inimese elule. Intellektipuudega inimesed ei ole suur grupp ühesuguseid inimesi, nad on kõik omaette isiksused, igaühel neist on oma vajadused, probleemid ja võimalused.

Intellektipuude tekkel on palju põhjusi. Puue võib olla päritlik, aga võib ka tekkida sünnituse käigus lapse aju hapnikupuuduse tagajärjel. Puude võib tekitada haigus või önnetus. Umbes 30% juhtudel jääb põhjus selgusetuks. Elanikkonnast 2,4% on intellektipuudega inimesed.[18]

1. jaanuaril 2012 oli Eestis määratud puue 21181 psühika- häirega inimesele ja 3615 intellektipuudega inimesele.[6]


Intellektipuudega inimese areng ja toimetulek sõltub palju keskkonnast, seega peaks võimalikult kiiresti hakkama tegelema puudega inimesele sobiva ja arendava keskkonna loominguga.[19]
Kognitiivne protsess
Inimese aju tegeleb paljude eri funktsioonidega, kõikide kirjeldamine käesoleva materjali raamesse ei mahu. Toodete, teenuste ja keskkondadega suhestumise mõistmiseks on pearmine tunda järgmisi mõisteid.[20]

Vastuvõtmine sisaldab protsessi, kus madalatasemelised aistingud, nagu valgus, vari, värv teisendatakse kõrgetasemeliseks tajuks objektides, nägudest jmt, sh kogu ümbritseva keskkonna mõistmiseks.

Töömälu kirjeldab ajutist ladustamist, mida kasutatakse kogu ümbritsevale keskkonnale ja pikaajaliselt salvestatud mälestustele viitava informatsiooni töötlemiseks ja korraldamiseks.

Pikaajaline mälu kirjeldab protsessi, mille läbi töömälu korduvalt olevat informatsiooni saab õppida, ladustada ja välja otsida.

Tähelepanu võib teadlikult suunata töömälu fookust keskkonnas olevatele spetsiifilistele asjadele ja mõjutada keskkonna mõistmist, kuna ta filtreerib välja tähelepanuta jäännud asjad; esilekerkivad ja peaelükivid sündmused võivad alateadlikult tähelepanu püüda.

Visuaalne mõtlemine on võime vastu võtta informatsiooni ja mõelda visuaalistest objektitest ja ruumilistest suhetest kahe- ja kolmemõõtmelisena.

Verbaalne mõtlemine viitab kõne, sõnade ja sümbolite muutmisele keeleks ja keelekasutusele, et ladustada ja kategoriseerida mälestusi kui seotud episeode.
3.6. Ealised erisused

**Eakad**
Statistikaameti andmetel oli Eestis 01.01.2011 seisuga 395 749 riikliku pensionikindlustusega isikut, neist 296 199 vanaduspensionäri, kes moodustasid rahvastikust 29,5%. Pensionäride arv kasvab keskmiselt 1000 inimese võrra aastas.[21] 2050. aastaks kasvab 65-aastaste ja vanemate inimeste arv Euroopa Liidus 70% ning üle 80-aastaste arv 170%.[22]

Vanurid jaotuvad tinglikult kaheks: hea tervise ja toimiva sotsiaalsüsteemi korral igapäevaeluga valdavalt iseseisvalt hakama saajad ja need, kes vajavad pidevat abi, näiteks saatjat avalikus ruumis liikudes ja teenuste kasutamisel ning igapäevase toimetulekul.

Tööealisel tervel inimesel on ringiliikumisel abiks terved ja tugevad lihased, kontrollitud motoorka, sensoorne ja kognitiivne võimekus ning igapäevatulest laiimisele.

Kontroll tasakaalu üle võimaldab probleemideta istuda ja tõusta toel ning pörandalt, liikuda erinevates keskkondades ning astuda treppidest üles või alla.


Vanemaealiste puhul on oluline keskkonnataastiklust teatud kontrastseks või akustiliseks muutmine, pöördamaks liikluses ja muudes oludes liikumisel tähelepanu ebaturvalistele aspektidele. Avalikuks liinaruumilist liikumisel on aärmiselt oluline püsiv puhkekohtade olemasolu pinkide ja muude toetuspin-dade näol. Tähtis on, et vanemaealine saaks loodud lahendusi võrdselt teistega kasutada, et pinkide oleksid mugavaks püstitõmmisest kätoed, istuda ei tuleks liiga madalale.
Kõik liigutused, mida peab tegema käte abil: nupule vajutused, erinevate objektide haaramine jne, peaksid olema lahendatud äärmiselt lihtsalt, arvestades, et vanemaealised inimesed lisaks lihastoonuse langusele armastavad kasutada asju ja laheendusi, mida nad tunnevad ja teavad või mille õige kasutamine on intuitiivne.

Madala liikumisvõimekusega inimesele on probleemised järgmised tegevused: keha põrandani painutamine või küüditamine, istumine, püstitõusmine, pisikeste esemete käsitlemine (näiteks väiksed nupud), füüsilist jõudu vajavad tegevused, eriti kui füüsilisele jõule lisaks on tarvilik täpne koordinatsioon, suletud ruumidesse sisese- ja neist välja-pääsemine, keerukad lukustusmehhanismid.


Suuremat ja reljeefse äärega korki on mugavam käsitelda. Väike ja libe kork ei avane nii lihtsalt.

Melioranski, R.-H., Tallinn, 2012
Sobiva keskkonna loomisel tuleb arvestada, et vanur:

- võib kasutada liikumisel abivahendit: käimisraam, kepp, kargud jne ning seetõttu saab esemete haaramisel kasutada vaid ühte kätt;
- vajab puhkust: oluline on piisav puhkevõimaluste tihedus avalikus ruumis ja hoonetes;
- vajab toetuspindu: ette tuleb näha käetoed või muud toetuspinnad, kust saab käte jõul tõusta ja istuda;
- saab paremini istuda selga maksimaalselt toetaval, kõrge seljatoega istmel;
- tunneb ennast mugavamalt ja liigub kiiremini, kui abiks on esemed, millest saab kinni hoida ja mis aitavad tasakaalu säilitada, näiteks käsipuud treppidel, ühistranspordis;
- armastab kasutada talle teada olevaid esemeid; uued lahendused peavad olema lihtsad nii vormilt kui kasutusloogikalt;
- saab paremini hakkama, kui info on dubleeritud ning loetavad tekstid ja visuaalne lahendus on lihtsad ja selged;
- vajab tugevat valgust nii visuaalselt kui füüsiliselt orienteerumisel.

Kaasava elukeskkonna juhendmaterjal

Elukeskkonna erinevad kasutajad
Lapsed


Lapsed hakkavad mänguväljakute ja avalike keskkondade objektidega vahetumalt suhistuma enne aastaseks saamist vastavalt individuaalse arengule ja Eesti tingimustes ka vastavalt ilmastikuloodule. Kuni kaheastasel lapsel on (eriti vihmase ja külmu ilma riiket) liikumine ja iseseisvuse kõndimine kohmakas ning laps vajab tihedat toetamist. Samas on nende jaoks kõik uus ja huvitav ning nad ei ole tuttud kehtestatud reeglitega, mistõttu neist ka kinni pidada ei osata. Väike laps öpib maailma tumma paljusi läbi suu, see tähendab, et köike pistetakse suhu, maitsetakse, kombitakse keelega. See nõuab laps järelevaatajalt hoolt ja kannastust ning ühtlasi ka ümbruskonna puhtust ja materjalide ohutust.
Kuni 6-aastased lapsed tavapäraselt avalikus keskkonnas üksinda ei liigu. See on periood, mil õpitakse tumma oma ümbruskonda ning seoseid maailma asjade ning iseenda vahel – õpitakse keskkonnaga vahetul tasandil suhestuma. Selles eas laste jõudlus on veel väike ning nad vajavad puhkuseks rohkem aega ja võimalusi ning mitmed täiskasvanute võimete kohaselt projekteeritud keskkonnad ja objektid on neile rasked läbida (nt trepiastmed, kõrgemad äärekivid, pikad trepikäigud jmt).

Suurem muutus elukorralduses saabub koolieaga, kus seni pideva järelevalve all olnud laps muutub pea üleöö iseseisevaks ning peab õppima omal käel keskkonnas orienteeruma ja liikluses hakkama saama. Väliskeskkonnas võib probleemiks osutada viitade ja teejuhiste tõlgendamine, samuti ohutuse tagamine liikuvate keskkonnaelementide ja transpordivahendite puhul. Seetõttu on oluline kogu informatsiooni ühendamine, visuaalne selgus ning verbaalne lühidus.

Noorukitega on Eesti avaliku ruumi kujundamisel väga vähe arvestatud. Oma füüsiliste võimete poolest on nad pea-aegu täiskasvanutega võrdsed, kuid sotsiaalseks arenguks vajavad nad keskkonnas suhtlemiseks ning kooskäimiseks võimalusi ja vahendeid, näiteks avalikke spordi- või teisi tegelusväljakuid. Kaasaegsed kommunikatsioonivahendid on märkimisväärsest suhtlusvõimalust avaranud, kuid need ei kompenseeri füüsilises keskkonnas, soovitatavalt värskes õhus söopradega veedetud aega.

Lastele mittleobivad või raskesti läbipääsetavad keskkonnad (nt liiga kõrged trepiastmed, järsud keerdtrepid, ilma käsipuudetud aegades) muudavad nende kasutamise ebameeldivaks, sest perekonnale, sest seetõttu, vanemad liikmed on sunnitud lapsi hakkamasabamisel abistama. Seltskonnas, kus abistamist vajab mitu last, vajavad ka mitut abistajat, mistõttu võib vähem abistajate puhul keskkond osutuda läbimatuks.

Reeda seitsme- ja neljaastase lapse pikkus ja haareulatus.
3.7. Somaatilised haigused

Somaatiliste haiguste probleemid on üldjuhul hästi ravimitega kontrolli all hoitavad, kuid hea keskkonnakujundusega on võimalik haigushooegisid ja sellest tulenevat ravimite vajadust märkimisväärselt kahandada. Eeskätt puudutab see sobivate materjalide ja taimele valikut, ehituspraktikas hoone sobivat orienteeritust ilmakaarte suhtes*, vajaliku soojustuse tagamist, liigse õhuniiskuse ja külmasildade vältimist ning head sisekliima toimimist.

Sõna allergia tuleneb kreeka keelest (allos ‘teine’ + ergon ‘tegu, töö’). Allergia all mõeldakse organismi ülitundlikkust mõnede ainete suhtes. See võib olla kaasa sündinud, siis on tegemist atoopilise allergiaga, või hilisemas elus tekkinud, näiteks allergiline nohu (heinanohu), toiduallergia mingi kindla toiduaine suhtes, kontaktallergia või astma. Sõna allergia kasutatakse kõigi nende haiguste kohta.

Allergilise haiguse tekkimise eeldus on kokkupuude ainete suhtes, mille vastu organismis on moodustunud vastuaineid – immunoloogiliselt aktiivseid rakke ehk lümfotsüüte. Kui satutakse selliste ainete suhtes kokku, hakkavad immunsisisteemis mingil põhjusel toimuma biokeemilised reaksioonid, mis põhjustavad allergilisi sümptomeid.

Allergeen on allergilist reaktsiooni põhjustav aine, enamasti valkaine. Allergeenid tungivad limaskestade, naha ja sooles-tiku kaudu organismi ja muudavad selle tundlikkust. Tundlikkus mingi aine suhtes talletub organismi immunoloogilisse mällu ja kui satutakse kokku jälle samade allergenenidega, siis vallandub vastav immunoloogiline reaktsioon.


Atoopia tähendab kiire kuluga päriliku allergilist reaktsiooni looduslikele allergeneidele. Atoopilised haigused on näiteks allergiline nohu ja silmapõletik, allergiline astma ja atoo-pilne eksem ehk lööve. Atoopiline kalduvus on inimesel, kellel on allergeenispetsiifilisi vastuaineid, kuid puuduvad haiguse sümptomid. Laias laastus on ülitundlikkus organismi ülitugev reaktsioon kehavõõrale ainele. Ülitundlikkuse vähendamiseks viiakse allergiline inimene kokkupuutesse algul väikest, kuid vähehaaval suurenevate allergeneiannustega.

*Päiksekütte ja loomuliku ventilatsiooni võimalusi kasutatakse maksimaalselt.


Ohku sattunud tolm, aerosoolid, igasugused gaasid, st õhusaaste tekitab astmat. Allergiline nohu jaotatakse kaheks: aastaajast põhjustatud ja aastaringne allergiline nohu. Varakevadest sügiseni põhjustab nohu õietolm (nn heinanohu), aastaringse allergilise nohu saab kodutolmust, loomakarvadest ja -köömast, toidust, hallitusseente eostest.[23]

Päritolu põhjal jagunevad allergeenid:[24]

- väliskeskkonnast pärvane vegi (ehk eksoallergeenid);
- organismis tekkinud allergeenid ehk endoallergeenid.

Eksoallergeenid jagunevad omakorda:

<table>
<thead>
<tr>
<th>Mittenakkuslikud</th>
<th>Nakkuslikud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elamutolm (lestad)</td>
<td>Bakterid</td>
</tr>
<tr>
<td>Õietolmud (puud, taimed)</td>
<td>Viirused</td>
</tr>
<tr>
<td>Karvad, juuksed, kõõm</td>
<td>Seened</td>
</tr>
<tr>
<td>Toiduained</td>
<td></td>
</tr>
<tr>
<td>Keemilised ained, ravimid</td>
<td></td>
</tr>
</tbody>
</table>

Väga sageli on elamutolmu lestad lapsepõlves algava atopiaalpilise astma põhjustajad, kuid võivad põhjustada vaevusi ka silmadele, ninale ja nahale. Elamutolmu levide vältimiseks on soovitatav hoida ruumide suhteline õhuniiskus alla 45%.

Öietolmu hooaeg algab varakevadel puude õietolmuuga. Peamisteks allergiahaiguste põhjustajateks meie kliimas on lepa, sarapuu ja eriti kase õietolm. Olenevalt ilmast (varakevadel) võib lepa õietolmu esineda õhus juba veebruarikuus. Nõrgema allergiseeriva tolmega on paju, tamme, vahtra, jalaka, pärna, papli ning okaspuude männi ja kuuse õietolm.


Paljud taimed öitsevad ühel ajal ja paljude taimede (näiteks kõrreliste) õietolmu suhtes on ühiseid allergiseerulisi omadusi, nii on võimalik ka üheaegne allergia kujunemine mitme taima suhtes.

Öietomiullergiat esineb linnainimestel sagedamini kui maalanikel. Et õietolm satub organismi peamiselt hingamisteed kaudu, siis võivad linna õhus enam esineda ja limaskesti kahjustavat saasteaineid – autode heitgaasid, vääveldioksiid, tolm, suits jm – soodustada organismi allergiseerumist õietoilmuale.

Vt ka artikkel “Allergiavaba New York” [25]
3.8. Liitpuue

Liitpuue all mõeldakse vähemalt kahe puude (motoorne, sensoorne, kognitiivne) koosesinemist, mis takistab või piirab isikut teostada igapäevaelu mitme valdkonnaga seotud tegevusi. Nii võib isikul esineda liikumispuue koos sensoorse (tunnetusliku) puude liikidega, näiteks nägemispuue, kuulmispuue, kommunikatsioonpuue.

Liitpuudega isikutel võib esineda ka vaimse tegevusvõime häirumine, seega on tegemist tegevusvõime ja toimetuleku seisukohalt pidevalt kõrvalabi vajava isikuga ning tema hakkamasaamine kodu- või väliskeskkonnas sõltub suuresti funktsioonihäireid kompenseerivate mehhanismide või abivahendite olemasolust.

Väga raske liitpuudega isikud võivad vajadusse järelevalvet või elulisi näitajaid stabiliseerivat tehnoloogiat, seega resideeruvad nad erihoolekandeasutustes ja liiguvad väliskeskkonnas vähe. Tänapäeval suureneb järjest kodukeskkonnas elavate liitpuudega isikute hulk.

Liitpuudega isikud vajavad keskkonna kohandusi samuti kui liikumis- ja tunnetuspuudega inimesed.

1. jaanuaril 2012 oli Eestis määratud liitpuue 27095 inimesele.[6]

Martin on jalaluumurru tõttu ajutiselt ratastoolis. Ta vajab pea kõigis toimingutes abi, mistõttu on suurem ka tema ruumivajadus.
3.9. Turistid

Turism on majandussektor, mille peamisteks komponentideks on:

- majutus koos toitlustamisega;
- reisitransport – lennu-, mere-, maantee- ja raudteetransport;
- looduslikud ja tehislusid vaatamisväärkused ning nende haldajad;
- reisiettevõttjad – reisikorraldajad ja reisibuurood;
- reisisihi korraldajad – avaliku, era- ja kolmanda sektori organisatsioonid ja asutused.

Maailma Turismiorganisatsiooni (World Tourism Organisation) määratluse järgi loetakse turismiks inimeste reisimist väljapoole nende igapäevast elukeskkonda puhkuse, äri või muudel eesmärkidel kestusega kuni üks kalendriaasta. Määratlusele vastavaid reisijaid nimetatakse külastajateks ja nad jagunevad ühepäevakülastajateks ja turistideks*.

Maailma Turismiorganisatsiooni esialgsetel andmetel oli 2010. aastal ööbimisega välisreiside arv kogu maailmas 935 miljonit. See on 6,7% ehk 58 miljonit võrra rohkem kui 2009. aastal ja 2,5% ehk 22 miljonit võrra rohkem kui seni rekordilisel 2008. aastal.

2011. aastaks prognoosib Maailma Turismiorganisatsioon maailma turismis 4–5% kasvu. Seega on kasv veidi väiksem kui 2010. aastal, kuid veidi suurem, kui on olnud pikaajaline keskmise kasvutrend (4%). Euroopale prognoositakse 2–4% kasvu. 2010. aastal ööbis Eesti majutusettevõttes 837 811 visitorit (kasv 71 218 võrra ehk +9% võrreldes 2009. aastaga). Seal veedetud ööde arv oli 1,5 miljonit (+8%).**

Arenenud riikide elanikkonna hulgas suureneb vanematesse vanusegrupidest kuuluvate inimeste arv, kelle tervis ja sissetulek võimaldavad jätkata harjumusparaseks kujunenud reisimist kõrge eanis. Samas tuleb arvestada, et nad eeldavad reisidel pakutavalt teenustelt suuremat mugavust kui nooremad vanusegrupid.


*Kurist ehk ööbimisega külastaja on isik, kelle reis välja pool nende igapäevast elukeskkonda puhkuse, äri või muudel eesmärkidel kestusega kuni üks kalendriaasta. Määratlusele vastavaid reisijaid nimetatakse külastajateks ja nad jagunevad ühepäevakülastajateks ja turistideks.*
Ka nooremate vanusegruppide seas on järjest rohkem inimesi, kes on külastanud paljud sihtkohti ja kelle jaoks reisimine on harjumusparene tegevus. See tähendab, et tarbija muutub pakkumiste hulgast valimisel järjest kriitilisemaks ning pöörab rohkem tähelepanu teenuste hinna ja kvaliteedi suhtes. Sihtkoha valikul tähtsustuvad selle keskonnasõbralikkus, turvalisus ja eripära. Järjest suureneva sihtkohtadevahekese konkurentsi tingimustes on eduteguriteks pakutavate teenuste kvaliteet ja mitmekesisus.

Kuna elu ja töö muutuvad järjest pingelisemaks, süveneb tendents teha pikema puhkusereisi asemel aasta jooksul mitu lühikeset, niinimetatud nädalalõpureisi. Seetõttu väheneb reisi kohta kulutatav summa, kuid aastas reisimisele tehtavad kulutused pigem suurenevad. Pingelisem elurütm suurendab ka lõõgastavaid protseduure pakkuvate puhkusevõimaluste (spaapuhkuste) populaarsust.* Transporti peetakse üheks kõige mõjukama teguriks turismi arenduses.


---

Turismisishtkohta juurdepääsu mõjutavad tegurid:

- barjäärivaba sihtkoht: infrastruktuurid ja hooned/abivahendid/tarbed;
- transport: õhu-, maa- ja meretransport, mis oleks sobiv kõigile kasutajatele;
- kõrgekvaliteediline teenindus: vastavalt koolitatud meeskonna poolt;
- tegevusalad, näitused, huviobjektid: peavad võimaldama ka turistidel osa võtta;
- turundus, piletite ettetellimise süsteemid, veebilehed ja -teenused: informatsioon peab olema kõigile kättesaadav.[25]

Turistid liiguvad põhiliselt avalikus ruumis. Peale transpordi on turistidele oluline õnni- ja rattateede loogiline ülesehitus. Turistidele peab olema tagad juurdepääs avalikele ja sotsiaalsetele teenustele, turismiobjektidele, majutusele* jne. Selle saavutamiseks on turistide jaoks esmatähtis informatsiooni kättesaadavus.

Individuaalturisti kohapealseks teenindamiseks on vaja füüsilist infokeskkonda, kust klient saab abi ja juhiseid ning mida toetavad toimiv viidasüsteem (kohviid, objektiviid, riiki sisenemise viidat jm) ja täiendavad turismiinfo jagamise kanalid. Tagad peab olema lihtne ja rahvusvaheliselt aru saadav viidasüsteem.** Kindlasti tuleb arvestada turisti kultuurilist ja keelelist eripära. Infomüra vähendamiseks on soovitav eelistada riigieelisest lisaks 1–2 võõrkeele kasutamist.

Puudega turistide vajadused reisimisel on spetsiifilisemad kui tavareisija omad. Ligipääs transpordile, majutusele ning kultuuriobjektidele on komplitseeritud ning vajab reisija-poolse eeltöö tegemist. Seetõttu on oluline, et puudega turistidele oleks tagad vajalik informatsioon abivahendite laenu- tuste ja ühiskondlike objektide ligipääsetavuse kohta.***

---

* Majutusasutustes järgida invanõuetele vastavalt projekteeritud tubade olemasolu.
** vt kommunikatsiooni peatüki
3.10. Elukeskkonna juhtimine

Iseseisvalt toimetulemine on puudega inimese jaoks esmase tähtsusega – see teeb temast ühiskonna täisväärtusliku liikme. Koduse majapidamise juhtimine ja korrashoid moodustavad sellest olulise osa. IBM PC-le on välja töötatud palju lisaseadmeid, mis võimaldavad inimesel kasutada erinevat majapidamistehnikat (raadio, teler, kütte- ja ventilatsiooniseadmed, telefon, ratastoolitööstükid jms). Arvuti juhtimiseks saab omakorda kasutada häälaga aktiveeritavaid seadmeid.

Butler-In-A-Box (MasterVoice) on terviklik juhtimissüsteem, millega saab ühendada nii personaalarvuti kui ka paljud kodused seadmed (valgustus, teler, magnetofon). Süsteem võimaldab sisestuseks kasutada ka mitmesuguseid lüliteid (näiteks ka teleri kaugjuhtimispulti), ka väljund võib olla mitmesugune (hääl, signaallambid jms).

See tehnoloogiavaldkond on viimastel aastatel kiiresti arene nud. Ehkki tehnika tänane tase ei võimalda veel täiesti vaba inimköne kasutamist, on edusammud siiski märgatavad. Arvuti või ratastooli juhtimisel eeldab hääle kasutamine tehnoloogia piisavat võimsust ja võimsa arvuti ressursside kaas mist vastaval otstarbel. Mõned tootenäited:


Paljud arvutitele heliseadmeid tootvad firmad (Creative Labs, Covox jpt) on nüüdseks oma populaarsetele PC-arvuti helikaartidele teinud ka kõnegal juhtimist võimaldavaid lisandusi. Enamasti on seal tegemist programmeeritavate makrodega, mille käivitamine toimub suulise käsu abil. Sel moel on olema makrodekomplektid paljudele populaarsetele tarkvarapakettidele.
3.12. Bibliograafia


4. Kommunikatsioon
Kommunikatsiooni peatükis käsitletakse informatsiooni edastamist linnaruumis ja selle vastuvõtmist eri kasutajagruppide poolt, kellel on erinevad võimalused ja kommunikeerumist hõlbustavad vahendid. Peatükis kirjeldatakse erinevaid kommunikatsiooniliiki (visuaalne kommunikatsioon, auditiivne kommunikatsioon, taktiilne kommunikatsioon ja interaktiivne kommunikatsioon), nende eripärasid, eri kasutajagruppide võimekust kommunikeeruda ning võimalikke alternatiive.
Tõhus kommunikatsioon on linnaruumis navigateerimiseks äärmiselt oluline. Puudega inimestel on tihedas eba- piisavalt või ligipääsematult esiletud teabe tõttu keskkonna täielikust funktsionaalsusse osaleda. Disainides ja kasutades kommunikatsioonivahendeid, mille ligipääsetavus põhineb kõikide keskkonna kasutajate vajadustel, saab rohkem inimesi kasutada ja tajuda keskkonda nii, nagu disainer seda algselt oli kavandanud.

Eakad ja puudega inimesed vajavad keskkonnas liikumiseks teistest enam selgeid ja süsteemseid navigatsioonijuhiid. Kommunikeerumine kasutajaga peaks algama keskkonda sisenemisel: kasutajale tuleks kohe anda ülevaade keskkonna plaanist ja olulistest elementidest selles (sisse- ja väljapääsud, infopunkt, WC). Näiteks sisemine park võiks alata käigutidele paigaldatud detailise navigatsiooniplaaniga, mis on varustatud taktiilse informatsiooniga ja märgistatud taktiilse rajaga.

Navigatsioonivahendid (suunavad viidad, kaardid, jne) füüsilise paigutus ruumis peaks olema kasutatud juba keskkonna planeerimise esimestesse etappidesse, sest see võib välja tuua ka keskkonna kui terviku üldiseid puudujääbe navigateeritavuse ja ligipääsetavuse osas.

Paljud pimedad ja nägemispuudega inimesed navigateerivad vaid oma mälu abil. Kui disain on loogiline ja lihtne, on nende iseisevet navigatsioon hoones või linnaruumis tõenäolisem, sest ligipääsetav ärkistus annab kasutajale keskkonna kohta piisavalt informatsiooni, et selles ise- seisvalt liikuda ja seda kasutada. Mida vähem takistusi ja ajutisi muudatusi on nende teel, seda kergem on neil sihtpunkt jõuda.

KOMMUNIKATSIOONIVAHENDID

Eristatakse nelja tüüpi kommunikatsioonivahendeid:

- informatiivsed – edastavad infot teenustest ja keskkonnaelementidest üldiselt:
  » kaardid;
  » navigatsiooniplaanid;
  » audiogiidid.

- suunavad – edastavad infot keskkonnas orienteerumiseks:
  » viidad;
  » erksavärvilised taktilised rajad;
  » helimärgised.

- identifikseerivad – kirjeldavad konkreetseid keskkonnaelemente:
  » toanumbrid;
  » WC-sildid;
  » korrusenumbrid;
  » sissepääsu ja väljapääsu tähistus.

- instruktiivsed – edastavad kasutajale ohutuse ja reeglitega seotud informatsiooni:
  » liikluskärgid;
  » kasutusjuhendid;
  » hoiatusmärguanded.
KOMMUNIKATSIOON JA KEEL

Intellektipuudega ja eakatel inimestel võib olla raskusi nii loodus- kui tehiskeskkonnas orienteerumisega, sest nad on üldiselt nõrgema õppimisvõimega ja kaotavad sageli orientiiri. Neile mõeldes tuleks kasutada lihtsustatud kommunikatsioonivahendeid liikumisradade tähistamiseks ja informatsiooni edastamiseks. Kognitiivsed häired mõjuvad pärssivalt lingvistilisele võimekusele. Keelebarjäär võib tähendada erinevat keelelist võimekust ning mõjutada seeläbi nii verbaalselt edastatavat kommunikatsiooni kui ka täiesti erinevat kirjasüsteemi.[2]


Kontrastetes värvides ja silmapaistev ajutise sissepääsu juurde suunav viit. Selged piktogrammid teevad vilda arusaadavaks keelebarjäärist sõltumata.
Melioranski, R.-H., Cité des Sciences et de l’Industrie ümberhitustööd, Pariis, 2012


Tekstile kommunikatsioon peab olema sisutihe ja struktuurilt lihtne, kasutama peaks vaid kasutaja jaoks tuttavat sõnavara. Informatiivsed teavitused, mis instrueerivad kasutajat, peaksid olema selged ja üheti mõistetavad ning pakkuma peale ülesande sooritamist selgesõnalist tagasisidet soorituse õnnestumise või mitteõnnestumise kohta.

**Kommunikatsiooni mõistmine**


**TEELEIDMINE JA KOMMUNIKATSIOON**

Teeleidmist tuleks käsitleda nagu tervikut, mis koosneb kognitiivselt ühendatavatest punktidest. Eri punktide juures tuleb teavitada kasutajat vaid selles punktis olulises informatiivnõust, sest liigne informatiivs on infomüra ning võib kasutajat eksiata.

Teeleidmise probleemidega puutuvad linnaruumi kasutajad iga päev kokku. Otsides võõras linnas haiglat, lennujaama...
või muuseumi, sõltu vas kasutaja otseselt visuaalsetest, audi-
tiivsetest ja taktiilsetest märkidel, mis teda keskkonnas
juhivad ning ka ohtude eest kaitsevad. Eelmisel kümnel
ähendas teeleidmise planeerimine vaid viitade ja märgiste
kavandamist, kuid tänapäeva tehnoloogia pakub linnaruuma-
mis navigeerimiseks palju erinevaid võimalusi. Interaktiivne
kommunikatsioon, GPS-süsteemeid mobiittelefonii või muu
GPS-i toetava seadme abil, veebühendusega lahendused
keskkondade sissepääsude juures – kõikide nende tehnikate
kasutamine ristub arhitektuuris, maastikul, interjööris ja
kommunikatsioonis.

Mõnes keskkonnas, nt haiglas, kogeb kasutaja tugevaid emot-
sioone ning osaleb mitmes tema ümber toimuvas sündmuses,
mistõttu tema keskendumisvõime selles keskkonnas on pärsi-
tud. Seetõttu on oluline pakkuda kasutajale võimalust tunda
end orienteerumisel võimalikult mugavalt ja enesekindlalt.

Keskkonna leidmine
Enne kui kasutaja saab keskkonda siseneda, on oluline, et ta
suudaks keskkonna linnaruummist üles leida. Siin muutuvad
oluliselt keskkonna sissepääsüü�es paiknevad maa-
märgid (kergesti äratundavad ja navigeerimist hõlbustavad
objektid nagu monumendid, silmatorkavad hoone osad). Tihti
kasutavad inimesed intuitiivsalt maamärke, mida arhitekt ei
ole otseselt selle tarbeks kavandanud, kuid hästi eristuvate
elementide planeerimine hoone välisküljele või keskkonna
sissepääs lähedale, eesmärgiga kasutajat suunata, võib siiski
kasutajale oluliselt abiks olla. Sellised planeeritud maamär-
gid võiksid olla multisensorsoored ja hõlmata kasutaja taju mit-
mekülgselt (visuaalne, informatiivne, taktiilne jne), et rahul-
dada võimalikult paindlikult kasutajate mitmekülgsid soove
ja vajadusi ning pakkuda lisaks ka esteetilist elamust.

Sisenemine ja väljumine
Sisse- või väljapääsule lähenedes peab kasutaja saama selle
kohta multisensorsoorset teavet: nt automatiseritud lükandust
on kerge tuvastada, kui sellele viitavad nii mitmed füüsilised
märgid kui ka andurina helimärguann. Kui sisse- või välja-
pääsul on kasutaja vaateväljas mitu eri ust või sissepääsu
meenutatud paneeli, peab kasutaja suutma neid üksteisest
lihtsalt eristada. Põhilise sissepääsutee keskkonda peab
olema kõigile kergesti ligipääsetav, ilma takistuste ja tasa-
pinnamuutusteta, mis võivad kasutajale ohtlikuks osutuda.
Liisasissepuus keskkonda on mõistlik kavandada vaid juhul,
kui ajaloolise või renoveeritava hoone põhisissepuus juures
on liiga vähe ruumi ja mitmeid erinevaid liikumisesandeid.
Sisenemine keskkonda või väljumine sealt peab võimaldama
teevõtte jätkamist ka pärast ukseava läbimist mugavalt ja
takistusteta.

Muudatuste korral tavapärases navigatsioonis (sissepääsule-
tud, keskkonna asukoht muudetud, liikumiserisustega ini-
mestele takistatud vms), tuleb kasutajat sellest ligipääsetavate


**Orienteerumine**


Erinevate sisuga kommunikatsioonivahendid (nt informatiivsed ja suunavad) peaksid olema omavahel selgelt eristatavad värvi, tekststüüpi, juhu vms abil. Avalikes kohtades, eriti ristmikel, jaamas ja ühissõidukite peatustes tuleb paigaldada hästi loetavad ja kaugelt märgatavad orientiirid, mis teatavad...
liikumispuudega isikutele ja vaegnägijatele ehituslikest takistustest ning muudest ohutudest. Vaegnägijatele tuleb anda teavet liikumisteel eesootavatest muutustest (trepil, ülekäigurajale või takistusele lähenemine, ohutussaare loppemine, tee suuna muutus jms) hästi tajutavate optiliselt kontrastsete suunnavigate, pinnakatte erinevuse, reljeefsete võöditide, ohutuspiirete või helisignaali abil.


Nägemispuu võib põhjustada raskusi ka mitteverbaalses kommunikatsioonis osalemisel. Erinevaid kujundusvõtteid, kuidas teha linnas liikumine vaegnägijatele lihtsamaks.

Keskkonnaga tutvumine

Otsustuspunkt
Otsustuspunktide on sõlmed ja hargnemiskohad keskkonna liikumisteedel, kus kasutajad peavad võtma vastu otsuse edasise liikumissuuna osas. Otsustuspunktides peaksid paiknema visuaalsed, taktiilsed, auditiivsed, interaktiivsed infokandjad ja maamärgised, et kasutaja jaoks neid otsuseid hõlbustada. Otsustuspunktide paigutus navigatsioonis võiks olla läbi mõeldud ja meelejääv – punktid võiks paikneda süsteemselt, teatud kauguse järel ja meelejääval visuaalsel võrgustikul.

Kaasava elukeskkonna juhendmaterjal 77 Kommunikatsioon
Olulised põhimõtted kommunikatsiooni planeerimisel:

- Teabe edastamiseks **tuleb** kasutada alati rohkem kui üht moodust.
- Mõtestatud info dubleerimine parandab informatsiooni kättesaadavust.
- Edastatav informatsioon peab olema võimalikult lihtsustatud.
- Lahendusi tuleb testida projekti varajases faasis spetsialistide ja kõiki kasutajagruppide peal.
- Lähtuda tuleb tervest kasutajateekonnast, mitte eraldiseisvatest elementidest.
- Lisaks lõppkasutajatele tuleb arvestada ka objektide hooldajate, abiliste, tööliste jms vajadusi.

- Info edastamisel tuleb arvesse võtta:
  - milline on kasutaja;
  - kasutaja väsimusaste ja kogemus;
  - kasutaja ja infokandja vaheline kaugus;
  - info komplekssus;
  - esitluskvaliteet (resolutsioon, kontrast, fookus, peegeldus, halb valgustatus, ilmaolud).

**Tööriistad ja simulaatorid projekti erivajaduste planeerimiseks:**

4.2. Visuaalne kommunikatsioon


Et soovitused antakse otseselt keskkonna ligipääsetavuse ja funktsionaalsuse suurendamiseks, ei tohiks neid järgides unustada ka visuaalse kommunikatsiooni esteetilise ja loomingulise poole tähtsust. Kasutajasõbralikus ja kaasa-valt disainitud keskkonnas on ligipääsetavus esteetikaga harmoonilises seoses ning pakub eredad elamusi kõikidele keskkonna kasutajatele.
TÜPOGRAAFIA JA LOETAVUS

Kirjatüübi valik ja tähekuju

• Enamus inimesi loevad terveid sönakujusid, mitte üksikuid tähti.\(^{[17]}\)
• Mida paremini eristuvad tähekujud üksteisest, seda lihtsam on teksti lugeda.

Tähekuju muudavad äratuntavamaks:

• suured apertuurid\(^{*}\);
• suured üla-** ja alapikendid***;
• tähe suur x-kõrgus****;
• üksikute tähtede erinev tähekuju.

Šeriifdega***** kirjatüübis kirjutatut on kergem lugeda pikemate tekstide korral ja paperil, digitaalsetel infokandjatel tuleb šeriife vältida.

• Veebi ja trüki jaoks tuleb kasutada erinevaid – veebi jaoks digitaalseks kasutamiseks loodud kirjatüüpe. Tihti on samast kirjatüübist nii trüki kui digikasutuseks mõeldud variant.

Tähe ehitus: apertuur, ala- ja ülapikend, x-kõrgus.

---

\(^{*}\)Apertuur (counter): tähe osaliselt või täielikult suletud valge siseruum.
\(^{**}\)Ülapikend (ascender): x-kõrgusest üles poole ulatuv osa (b, d, h, l, t).
\(^{***}\)Alapikend (descender): tähe alapoolist allapoole ulatuv osa (y, g, j, p).
\(^{****}\)x-kõrgus (x-height): väiketähe kõrgus ilma pikenditeta.

\(^{*****}\)Šeriifdega kirjatüüp (serif font): kirjatüüp, mille tähekujude otstes on lühikesed, (enamasti horisontaalsed) kriipsud (šeriifid), mis ühendavad tähti visuaalselt, Šeriifd kergendavad paberikandjal pikema teksti lugemist, kuid ei sobi hästi digitaalseks kasutuseks. Šeriifdega kirjatüübid on näiteks fondid Times ja Garamond.
Valiku erinevate omadustega kirjatüüpide võrdlus

**kirjatüüp**

Sans serif (šeriifideta) kirjatüüp Helvetica

Mitmete lõigetega universaalne kirjatüüp sobib kasutamiseks nii suures kui väikses formaadis.

**kirjatüüp**

Sans serif kirjatüüp Tiresias LPfont

Kirjatüüp on kujundatud ekstra nägemispuudega kasutajale, et saavutada suuremat loetavust ka kehvemates keskkonna-tingimustes. Kirjatüübil on erinevaid lõikeid nii veebis, trükis, suurtel ja väiksetel formaatidel kasutamiseks.

**kirjatüüp**

Slab serif (ruutšeriifidega) kirjatüüp PMN Caecilia

Suure x-kõrgusega, avatud apertuuridega kirjatüüp sobib kasutamiseks nii trükistel kui ka digitaalseks kasutamiseks (vaatamata šeriifidele). Kirjatüüp on kasutusel nt lugemisseadmes Kindle, et imiteerida trükikirja ja lugemist mugavamaks muuta.

**kirjatüüp**

Serif (šeriifideta) kirjatüüp Times

Traditsiooniline kirjatüüp kasutamiseks trükistel pikemate tekstide loetavuse parandumiseks. Šeriifid aitavad silmal ridu kiiremini haarata ning tähti üksteisest eristada. See kirjatüüp ei ole aga hea valik veebis ja digitaalsetel infokandjatel kasutamiseks.

---

Kaasava elukeskkonna juhendmaterjal 81 Kommunikatsioon
Teksti loetavus
• Teksti loetavust raskendavad tihedad tekstilõigud ja liigendamata tekst.

• Loetavuse suurendamiseks aitab punktisuurusest 20–30% suurem reavahe*, väiksem reavahe vähendab teksti loetavust.

• Vasakjoondus suurendab teksti loetavust, sest muudab ridadel liikumise silma jaoks lihtsamaks.

• Teksti loetavust parandab kirjatüübi vähene stiliseeritus.

• Läbiva suurtähega, tihendatud kirjaga või kursiivi** teksti on raskem lugeda, sest täheküjude erisused ei tule nii selgelt välja.

• Stiliseeritud kirjatüübi kasutamisel tuleb sellega edastatud informatsioon dubleerida ka loetavamas kirjatüübisis.

• Loetavuse ja ligipääsetavuse tagamiseks tuleb teksti dubleerida võimaluse korral piktogrammiga.

Olulise rõhutamine
• Olulise rõhutamisel tuleb kasutada kirjatüübi erinevaid lõikeid, mitte läbivat suurtähte.

• Läbivat suurtähte võib vajadusel kasutada vaid üksikute lühikese sönade edasiandmiseks.

• Ainult värvilise teksti kasutamist olulise rõhutamiseks tuleb vältida, et tagada teabe jõudmist kõikide kasutajagruppide (sh värvipimedateni).

---

*Reavahe (line space): kahe tekstirea vaheline horisontaalne ruum.

**Kursiiv (italic): kaldkiri, mis põhineb kalligraafilisel käekirjal.
**Kontrast taustaga**

- Kirjatähed ja taust peavad olema kontrastsetes toonides, soovitatavalt heledad tähed tumedal taustal.\(^{[18]}\)

- Tähtede kuju ja suurus peavad tagama teabe nähtavuse ka vaegnägijatele.\(^{[6]}\)

- Soovituslik on 70% värvikontrast tausta ja sellel asetseva teksti vahel.\(^{[18]}\)

- Teksti ei tohiks asetada mustrilisele taustale.\(^{[18]}\)

---

**Kirjatüüp ja piiratud kognitiivsed võimed**

Düslektikutel* on raskusi sarnaste tähekujude omavahelise eristamisega, neid aitaks kirj[19], kus tähtede üla- ja alapikendi ning tähepaunad on erineva pikkuse, kalde ning tähepakusega ning kirjavahemärgid tavapärasest tähel parserad. Rõhku tuleb asetada tähereal alumisele osale, et vältida tähtede möttelist ümberpööramist.

Pikemate tekstide puhul aitaks düslektikuid eri lauseosade rõhutamine näiteks värvikoodiga (tegusõna sinine, nimisõna punane). Hollandis Twente ülikoolis väljatöötatud kirjatüüp Dyslexie vastab kõikidele nendele nõudmistele ja on testide tulemusel lugemishäiretega kasutajatele loetavam ja veakindlam kui tavapärased kirjatüübid.\(^{[20]}\)

---

Kirjatüüp ja nägemispuue
Nägemispuudega kasutajal (sh eakal kasutajal) on ka abiva-
hendeid kasutades ning õiges valguses lugemisel keeruline
eristada tähekujusid ning lauselõppe, mistõttu on pikemate
tekstide ning ka viitade tekstide lugemine nende jaoks vaeva-
line tegevus. Ka tavakasutajal on halvasti laotud ning sar-
naste tähekujudega teksti väsitav lugeja. Hea disain nägemis-
puudega kasutajale on hea disain suuremale osale teistele
kasutajatele.

Vabavaraline kirjatüüp Tiresias pakub lõikeid nii digitaalseks,
taktiilseks kui ka paberil kasutamiseks. See kirjatüüp on
kujundatud ekstra nägemispuudega kasutajale, silmas pida-
des suuremat loetavust ning arvestades kasutaja vajadusi ka
kehvemates keskkonningimustes. Kirjatüübis on rõhutatud
kirjavahemärgid ja tähetäpid, hästi eristatavad numbrid (sh 6,
8, 9) ja tähekujud (nt l, l, i ja 1) ja avatud apertuurid.

Tiresias LPfont
ABCDEFGHJKLMNPQRSTUVWXYZÆØÆ
abcdefghijklmnopqrstuvwxyzæøæ
1234567890.,:!?-–—

689Iliäöü
Tiresias LPfont
689Iliäöü
Helvetica
**MÄRVID JA SÜMBOLID**

Tihti saab keskkond ise ligipääsetava planeeringu tõttu navigatsiooni ja vajalike keskkonnaelementide leidmist lihtsustada. Näiteks WC-d ja sisse- ja väljapääsud võiksid paikneda nii, et nad oleksid tavakasutajale intuitiivselt leitavad – nii on navigatsioon lihtsustatud ka erivajadusega kasutajale. Et navigatsiooni veelgi parandada, arvestades eri keelt kõnelevaid, erineva kultuuritausta ja kognitiivse võimekusega kasutajaid, tulevad appi märdid ja piktogrammid.[21]

Märgisüsteemide planeerimisel tuleb arvesse võtta eri sümbolite kultuurilist tähendust; ka lihtsamad ja tuntumad sümbolid, nagu nt punane rist, ei kanna eri kultuuriruumides ühesugust tähendust: islamimaades on nt punase risti asemel kasutusel punane kuusirp.

AIGA 50 loetavaks ja ligipääsetavaks kujundatud piktogrammi on kõigile tasuta allalaadimiseks ja kasutamiseks üleval aadressil:
http://www.aiga.org/symbol-signs/
**Ligipääsetavuse sümbolid**

Rahvusvaheliselt tunnustatud ligipääsetavuse piktogrammi ISA on kirjeldatud standardis ISO 7001. Piktogrammil on sinisel taustal valge stiliseeritud isik, kes kasutab ratastooli. Piktogrammi kasutatakse erinevate puuetega inimestele ligipääsetavate kohtade markeerimiseks:

- Puudega inimestele reserveeritud parkimiskoha markeerimiseks;
- Puudega inimse poolt kasutatava sõiduki markeerimiseks;
- Avaliku WC märgistamiseks, mis on puudega inimestele kohandatud;
- Automaatselt avaneva ukse nupu markeerimiseks;
- Ligipääsetava marsruudi markeerimiseks;
- jne.

Kaasava disaini põhimõtteid järgides tuleks aga selliste piktogrammide kasutamist võimalusel vältida ning kujundada keskkonda moel, mis tagab ligipääsetavuse kõikidele keskkonna kasutajatele.

---

Rahvusvaheline ligipääsetavuse piktogramm.
1. Universaalne informatsiooni piktogramm.
2. Rahvusvaheline ligipääsetavuse piktogramm.
3. Audiodubleering avalikel üritustel.
4. Audiodubleering filmidel ja TV-s.
5. Suure/ligipääsetava kirjaga trüki sümbol.
7. Braille’ kirja piktogramm.
8. Tekstitelefon (TTY) piktogramm.
9. Viipekeele tõlke piktogramm.
10. Abistav kuuldesüsteem.
11. Abistav kuuldesüsteem telefonile.
12. Subtiitrite piktogramm.
Piktogrammid peaksid:
- koosnema nii vähdestest komponentidest kui võimalik ja mitte rohkem kui 2–3 elemendist;
- edastama lihtsat, selget ja asjakohast infot;
- olema keelest sõltumatud;
- paiknemä heavärvilisel ja raamiga eraldatud taustal, et vältida sulandumist taustamürasse;
- koosnema suurematest nurkadest kui 30°;
- seoste tekitamiseks ja tähelepanu koondamiseks kasutama värvı hästi läbimõeldult;
- vältima eristamist ainult värviga ja dubleerima vajaduse korral värviga edastatavat infot;
- kasutama rahvusvahelisi tähistusi;[6]
- olema keskkonna piires süsteemse ja järjepideva kujundusega, et soodustada märgi äratundmist ja selle sisu kiiremat mõistmist;
- vältima abstraktseid ja raskesti meeldejäävaid elemente.[22]

VÄRV JA KONTRAST
- Värvid suudavad kasutajaid probleemide juurde juhtida ja osutada süsteemi oleku muutustele; mida soojem/kuumem värv (punane, oranž), seda olulisem informatsioon.
- Punane, roheline ja kollane peaksid jääma teavitusvärvideks.
- Maksimaalne värvide hulk, mille tähendusi kasutajad suudavad meeles pidada, on 5±2.
- 20st inimesest ühel esineb värvipimedust.
- Tuleb kasutada värvı, mida suudavad eristada iga tüüpi värvitajuga inimesed.
- Värvipimedad on tundlikumad heleduse ja tumeduse ja värvı küllastatuse* suhtes; alati tuleb ka arvestada keskkonna loomulikku valgust, kuhu vastava värvıga objekt asetatakse.

*Värvi küllastatus (Colorfullness): Värvi erinevus hallist. Maksimaalselt küllastunud värv ei sisalda halli värvi; madalama küllastatusega värvi on aga hallile lähemal ning seetõttu pastelsem ning tuhmim.
• Lisaks värvile tuleb kasutada ka alternatiivset visuaalset erinevust (erinev kuju, joone paksus, paigutus, vorm, muster).

• Värvipimedatel on teistest keerulisem eristada peenikesi jooni ja väikside sümboleid.

• Osade värvinägemishäirete puhul ei ole punane värv erk ega hästi eristuv, vaid sama tuhm nagu roheline või sinine, tihti ei suudetagi neid värve eristada.

• Tuleb vältida punase–rohelise, punase–sinise, punase–violetse ja punase–mustaga kontrasti tekitamist.

• Abiks on toonierisused, nt puhta tumepunase asemel tuleb kasutada lühema lainepikkusega kollakaspunast (vermillionit), mis on äratuntav ka protanoopia tüüpi värvipimedatele.

• Sinine värv on esimene, mille nägemine vanusega halveneb, samuti on sinisel pinnal raske fokuseerida; see-eest on sinine hea taustavärv, kuid seda tuleb vältida esiplaanil, eriti teksti ja väikeste objektide puhul.

• Vältida tuleb kommunikeerumist ainult värvinimetuste abil (punane liin, sinine koridor), sest kasutajad näevad värve erinevalt.

• Värvid peaksid olema kasutaja jaoks nimetatavad ja seeläbi kergesti meeldejääavad, nt rohekassinine tekitab rohkem segadust kui loob seoseid.

• Kui sama värvi objektide hulk kasvab, siis kasvab ka keskmine otsimiseks kuluv aeg (lineaarselt, 0,13 sekundit iga kolme uue objekti kohta); see tähendab, et värvide kasulikkus kahaneb sedamööda, mida rohkem objekte on sama värv.

• Kui objekti värvus on otsitavast värvusest piisavalt erinev, siis see element otsimiseks ei mõjuta. Näiteks kollane värv kasutajat punaste objektide otsimisel ei sega, sest on piisavalt erinev, oranž on aga liiga sarnane.

• Tuleb eelistada erinevaid sümboleid vähese hulga hästi eristatavate värvidega, selle asemel et kasutada sama sümbolit eri värvitootedes mingisuguse erisuse näitamiseks (nt kaarditähised).
• Kontrasti tuleb lisaks värvile hoida ka hele-tumeduse vahel – tekst ja objekt peksid taustast tugevalt eristuma. Must kiri valgel taustal on kõige värvipimed-sõbralikum kombinatsioon.

• Eelistada tuleb heledaid objekte tumedal taustal.

• Lisaks värvikontrastile tuleb kasutada ka hele-tumeduse kontrasti, sest seda suudavad nägemispüüdega inimesed värvikontrastist paremini eristada; nt kirsipunane ja must on suure värvikontrasti, kuid madala hele-tumeduse kontrastiga ja nägemispüüdega inimestele halvemini eristatavad kui kahvaturoosa ja must.

• Hele-tumeduse kontrast on oluline, et aidata vaegnägijat ruumi objeektide eristamisel (ukseavad, viidad, käsinipuud, prügikastid, huviobjektid); kontrastiga saab märgistada ka võimalike ohupunkte keskkonnas (astmeääred, söidutee postid, söidutee äär jms).

• Informatsiooni viidel (kas tekstiline või pildiline) peab loetavuse tagamiseks olema suures kontrastis oma aluspõhjaga; viit ise peab aga eristuma taustamürast, millesse ta on paigutatud.

• ADA ligipääsetavuse standard soovitab 70%-st värvikontrasti tausta ja sellel asetseva teksti vahel, kindlasti ei tohiks teksti asetada mustrilisele taustale.
• Olemasolevate visuaalsete infokandjate ligipääsetavuse kontrollimiseks tuleks neid pildistada ning fotod must-valgesse värvigammasse keerata. Sellise kontrolli tulemusena peaks selguma, kas värvitoonid on üksteise suhtes piisavalt kontrastsed.

**VORM, MATERJAL JA KESKKOND**

• Trükistele lisaks peaks alati pakkuma ka alternatiivset infokandjat (suure kirjaga trükist, heliklippi, Braille’ kirja või digitaalset kõnesüntesaatoriga loetavat failitüüpi).


• Märgistused välakeskkonnas kuluvad kiiresti ning muutuvad äärmuslikes ilmtingimustes loetamatuks. Et märgistus toimiks kavandatult, tuleb seda regulaarselt kontrollida ja hooldada, eriti juhul, kui see koosneb mehaanilistest või elektrilistest komponentidest.


• Materjali valikul on oluline pinna peegeldavus ja läävikus. Parem on valida vähen valgust peegeldavaid mate materjale, mis kasutajat nii teksti lugemisel oluliselt vähem pimestavad. Tuleb valida teksti trükkimist läävikale paberile, sest vaegnägijatel on peegelduvalt pinnalt oluliselt keerulisem lugeda.

• Seina paigaldavate ja iseseisva konstruktsiooniga viitade soovituslik paigutuskorgus on 1450–1750 mm, keskosa 1600 mm kõrgusel.
4.3. Auditiivne kommunikatsioon

ÜLDPÕHIMÕTTED


Heli on sama hädavajalik kui visuaalne informatsioon, sest see annab teavet toimuva kohta siis, kui silmad on hõivatud mujal või esineb nägemispüue. Loomulikud ehk “päris” helid edastavad naturaalsete esemete keerukat vastastikust toimet – kuidas esemed liiguvad üksteise suhtes (tabavad üksteist, libisevad, rebenevad, langevad, põrkuva), millisest materjali on erinevad osad (õõnsad, monoliitsed, metallist, puidust, pehmed, kõvad, töötlemata või töödeldud). Veel enam, helid erinevad sõltuvalt esemete iseloomust, nende suurusest, tahkusest, pingest ning materjalist, sellest, millisel kiirusel nad liiguvad ning kui kaugel nad asetsevad. Heli annab tagasisidet toimuva suhtes, heli puudumine aga tähendab informatsiooni puudumist.

“Ma olen neid aparaate (makseterminal – toim.) näinud, kus ta teeb piuksu, kui paneid sisse (pangakaardi – toim.) ja teeb piuksu siis, kui vaja välja võtta. See on väga hea! Ma usun, et sellest võidaksid kõik.”


Kristiina Peetsalu

Kaasava elukeskkonna juhendmaterjal

92

Kommunikatsioon
Helide loomisel ning nende kasutamisel tuleb arvesse võtta järgmisi punkte:

- Peab mõistma heli ning edastatava informatsiooni loomulikku suhet.
- Tehislike seadmete helid peaksid olema sama kasulikud kui helid reaalses maailmas.
- Helid võivad muutuda kasulikest häirivateks ning tüütuteks.\[23\]
- Helid peavad olema informatiivsed.
- Eelistada tuleb naturaalset salvestatud kõnet sünteesitule. Vältida tuleb körge helikõrgusega kõnet.
- Taktiilne tähis auditiivse infoga võib osutuda eriti tõhusaks abivahendiks nägemispuudega inimestele ruumis liikumisel.
- Avalikes ruumides võiks kasutada naturaalsetest ning dekoratiivsetest elementidest lähtuva helisid, nagu kosed, purskkaevud, taimed, kellad, tuuleillid jne, mis töötaksid peente kuuldavate märguannete kohas. Vaegnägijad on vastuvõtlikumad sellistele elementidele ning suudavad kasutada neid orienteerumise abivahenditena.\[23\]
- Võimaluse korral tuleks tagada reguleeritav helitugevus. Selle puudumisel tagada piisav valjus ümbristeva müra suhtes.
- Tagada tuleks piiksude ning toonide sagedused vahemikus 0,8 kuni 1 kHz, et maksimeerida inimeste arvu, kes on suutelised neid märkama.
- Süsteemides, mis edastavad ning reprodutseeravad könet, tuleks tagada piisav kõne selgus.
- Paremaks könetuvastamiseks tuleks kasutada intonatsiooni, sobivat sõnade määraka ning selget hääldust.
- Helid, mis sisaldavad mitut sagedust, aitavad inimestele määrata, kust heli tuleb.
- Kuulmispuudega inimeste huvides tuleks tahi sagedust lisada informatsiooni visuaalsete või taktiilsete vahenditega, sadas arvesse võttes võimaliku info üleküllastumist. Võimaluse korral peaks kasutaja saama reguleerida kuulmisväljundite tooni ning helitugevust.
- Kaaluda tuleks induktsioonsilmuste võimaldamist inimestele, kes kasutavad suhtlemisel kuulmisaparaate.\[25\]
NÕUDED KOMMUNIKATSOONISÜSTEEMIDE LAHENDUSTELE

- Valjuhääldite ja teiste kõnevahenditega tuleb tagada informatsiooni kättesaadavus eeskätt hoone võtmealadel, nt sissepääsude juures ja koridorides. Elutahtis info peaks olema kuulav kogu avaliku hoone ulatuses.

- Avalikes hoonetes asuvate tulekahjualarmide signaalid peaksid olema seadistatud eakaid ning sensoorse puudega inimeste eripärasid arvestavad ning teavitama esiteks probleemi olemasolust ning teiseks hoonest evakueerumise vajadusest.

- Kõik olulised kahesuunalised kommunikatsiooni-süsteemid, mis kasutavad hääle sisend- ning väljundseadmeid, peaksid olema seadistatud digitaalse ekraaniga kuulmis- ning könepuudega isikutele.

- Kommunikatsioonisüsteemid, nagu telefonid ning muud kõnesidesüsteemid, peaksid sisaldama igas reas ühte seadet, millel on kuulmispuudega inimetele mõeldud helivaljuse seadistamise võimalus.

- Kasutades visuaalseid sisend- ning väljundseadmetega ekraane, tuleks tähelepanu pöörata ka nägemisraskustega inimestele, pakkudes helivaljundiga alternatiivse või täiendava süsteemi.

- Visuaalsete avalike sidesüsteemide kasutamisel avaliku teabe eesmärgil (nt videotüüpi terminalides) tuleks kaaluda helivaljundit (nt häält või eelnevalt salvestatud teavist) ning alternatiivset tüüpi olulist informatsiooni edastavaid vorme (nt suur kirjasuurus ja Braille’ kiri nägemispuudega inimestele).


- Kõigis eakatele ning puudega inimestele mõeldud avalikes hoonetes ning institutsioonides, kus pakutakse teenuseid ning programme, on soovitav kasutada kaheetaplilist häiresüsteemi, millel on igal etapil selgesti eristatavad (nt impulssidena või katkendlikud) jalakäijate helisignaalid.

- Kaasaskantavatele vibreerivatele alarmitele tuleks täiendavalt lisada helisignaal, mõeldes hoonele või institutsioonide kuulmispuudega kasutajatele.¹²⁶
“Piuksv valgusfoor on väga tähtis – see on ainus asi, mis turvaliselt üle tee aitab.”

Kristiina Peetsalu


http://www.accessforblind.org/aps_abt.html

Kõigile mõistetavad jalakäijate signaalmärguanded (KJS)

Muutused ristmike kujunduses ning signaalmärguannetes, ka vaiksemate autode lisandumine on muutnud pimedate ning vaegnägijate tee ületamise tehnikat, raskendades jalakäijate faasi äratundmist, kuna nad ei näe jalakäijate valgusfoori. KJS-id edastavad auditiivses ja/või vibrotaktiilises formaadis sama informatsiooni, mis visuaalsed jalakäijate signaalmärguanded (valgusfoorid), muutes jalakäijate signaalmärguanded kättesaadavaks pimedatele jalakäijatele.

KJS-ide põhifunksioonid

KJS-id võivad anda jalakäijatele informatsiooni:

- rohelise tule signaalmärguannet aktiveeriva surunupu olemasolust ning asukohast;
- köndimise intervalli algusest;
- ülekäiguraja suunast ning sihptunkti könnitee serva asukohast;
- ristuvate tänavate nimedest Braille’ kirjas, reljeefrükis või häälteadetes;
- ristmike signaalmärguannetest häälteadete kaudu;
- ristmike konstruktsioonist taktiilsete kaartide ning diagrammide või häälteadete kaudu.


http://www.accessforblind.org/aps_abt.html
KJS-ide eelised

Uuringud näitavad, et KJS-id kergendavad pimedatel jalakäijatel teeületust:

• vähendavad teeületuse alustamist punase tule ajal;
• vähendavad viivitust;
• teeületus lõpeb olulisemini enne signaaltule vahetumist;
• lisaks saavad nägijad jalakäijad alustada KJS-iga varustatud ristmikel teeületust kiiremini.

Järgnevalt on kirjeldatud jalakäijate eri tüüpi signaalseadmete ning nende eripärasid.

Audiovisuaalne jalakäijate valgusfoor:

• 1960. ning 2000. aastate vahel enim paigaldatud seadmete tüüp USA-s;
• kell, pörin, käo kukumine, sirin, toon või verbaalne sõnum on kuuldavad ainult rohelise tule intervallis;
• seade on suhteliselt vali, kuna seda peab kuulma teiselt poolt teed ning see peab tegutsema navigatsioonimärgina.

Melioranski, R.-H., Viru väljak, Tallinn, 2012

Audiovisuaalne jalakäijate valgusfoor.

Pildil on näidatud lokaatortooni edastava seadme asukoht.
Surunupuga varustatud jalakäijate signaalseade:

• on laialt kasutusel Euroopas ning Austraalias ning levib kiiresti ka USA-s;

• kölarid ning vibreerivad pinnad asuvad surunupu juures;

• regulaarselt korduv vaikne lokaatortoon informeerib surunupu olemasolust ning asukohast*;

• surunupu lokaatortooni ning rohelise tule indikaatorihelivaljuse tase muutub vastavalt ümbritsevale helile;

• helivaljuse tase on tavapäraselt seadistatud nii, et see oleks kuuldav tee ületamise alguses;

• Surunupule vajutamise võib seadistada edastama kuuldavat tekstinformatsiooni (näiteks tänavanimed, ristikute geomeetria). See eeldab surunupu juures taktiilse, suunda näitava noole olemasolu ning info esitamist lühidalt ja üheselt arusaadavalt.”**

* Lokaatortoon on regulaarselt korduv toon tulede vilkumise ajal ning ühtlane toon punase tule intervallis.

** Lisainfo: http://www.apsguide.org/chapter4_message.cfm
Vastuvõtjapõhine jalakäijate signaalseade:
• sõnum edastatakse jalakäijate signaalseadmelt individu isiklikule vastuvõtjale, kasutades infrapuna- või LED-tehnoloogiat;
• pime jalakäija peab omama ning kaasas kandma paigaldatud tehnoloogiale sobivat vastuvõtjat;
• seadmeid on võimalik seadistada edastama lisainformatsiooni, näiteks tänavanimed, ristmike geometria, liikumissuuna ning aadresside kohta.

Linke heade tavade kohta:
• http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w117a.pdf
• http://www.access-board.gov/prowac/guide/PROWGuide.htm#3_5_2
• http://www.apsguide.org/index.cfm
• http://www.access-board.gov/research/APS/report.htm
NÕUDED KESKKONNALE

Akustilised tingimused ja müra

Kui müra ei olekski tervist kahjustav, siis ikkagi vähendaks see hubasust näiteks töökohas, eluruumides ja puhkealadel. Hubasus oleneb sellest, kuidas inimesed tajuvad helitingimusi enda ümber. Psühholoogilise heaolu seisukohast võib müra määratleda häälena, mis häirib käsil olevat toimingut või on mõnel muul viisil vastuõigus, või vastu catching helimaastiku.

Helide liigitamine müraks ja meeldivaks heliks ei toimu ainult helitugevuse hindamise põhjal, sest helikeskkonna aistmine on alati subjektiivne. Olenevalt parapla tehtavaid toiminguid või olukorda võib heli olla heli kasulik või häiriv.

Kõige olulisi faktor, mis mõjutab kuulmist, on müra kohalolu. Müra on põhimõtteliselt ümbruskond, mis segab huvipakuva heli tajumist. Müra loob tingimused, kus kasutaja peab eraldama huvipakuva heli ülejäänud helide segust.

Kuulmisaparaadid on kõige vähem efektiivsed mürarikkas keskkonnas, kuna nad võimendavad taustamüra valimatult. Induktsionsilmused või telefonilülitid edastavad heli otse kuuldeaparaati, mida saab seadistada signaale vaid vastu võtma, elimineerides seda taustamüra täielikult.

Keskkondade ning ruumide kujundamisel tuleb arvestada heli peegeldumist ning järelkõla. Ruum, milles on rohkesti heli, on meedangum ning järelkõlas, eriti seai sellega. Seda esineb avalikes ruumides, kus teavitused on olulised, mida saab suunata vastu võtma, elimineerides sedasi täielikult.


Kuulmisaparaadid on kõige vähem efektiivsed mürarikkas keskkonnas, kuna nad võimendavad taustamüra valimatult. Induktsionsilmused või telefonilülitid edastavad heli otse kuuldeaparaati, mida saab seadistada signaale vaid vastu võtma, elimineerides seda taustamüra täielikult.

Keskkondade ning ruumide kujundamisel tuleb arvestada heli peegeldumist ning järelkõla. Ruum, milles on rohkesti heli, on meedangum ning järelkõlas, eriti seai sellega. Seda esineb avalikes ruumides, kus teavitused on olulised, mida saab suunata vastu võtma, elimineerides sedasi täielikult.


Kuulmisaparaadid on kõige vähem efektiivsed mürarikkas keskkonnas, kuna nad võimendavad taustamüra valimatult. Induktsionsilmused või telefonilülitid edastavad heli otse kuuldeaparaati, mida saab seadistada signaale vaid vastu võtma, elimineerides seda taustamüra täielikult.
Vastavuses ELi ehitustoodete direktiivi 89/106 nõuetega hõlmab ehitiste mürakaitse üldjuhul kaitset:

- ohumüra eest, mis pärineb väljastpoolt ehitist või ehitise teistest (kinnistest) osadest (sh inimtegevusest põhjustatud ohumüra);
- löögimüra (sh sammumüra) eest;
- tehnoseadmete (sh ehitise tehnikohanduse) poolt tekitatud müra eest;
- soovimatüüdi järelkõla (reverberatsioonimüra) eest;
- ehitise enda sees tekkinud või ehitisega seotud müra eest (nt tööstus, söiduteed, meelelahutusasutused jms).


Kasutusele on võetud neli hinnangukategooriat ehk heliklassi: A, B, C ja D. Uued elamud projekteeritakse vastavalt C-klassi akustilistele tingimustele (ka meie projekteerime helisosiooni vastavuses C-klassi nõuetega); D-klassi nõuded käivad vanade või renoveeritavate elamute kohta, A- ja B-klassi nõuded võimaldavad saavutada tavapärasest paremaid akustilisi tingimusi.

Hoone kuulumine vastavasse heliklassi tehakse kindlaks akustilistemõõtmiste teel. Elamu akustiline hinnangukategooria annab elanikke võimaluse saada usaldusväärset teavet korteri akustiliste tingimuste kohta, kusjuures need tingimused peaksid kajastuma ka korteri hinnas.

Kaasava elukeskkonna juhendmaterjal

100

Kommunikatsioon
Kõrvaolevas tabelis on toodud heliisolatsiooninõuded neljale heliklassile ning elanike subjektiivne hinnang akustiliste tingimustele.\[30\]

- Heliklass A: Eeldatud, et rohkem kui 90% elanikest hindab akustilisi tingimusi heaks või väga heaks.

- Heliklass B: Eeldatud, et 70 kuni 85% elanikest hindab akustilisi tingimusi heaks või väga heaks. Vähem kui 10% hindab akustilisi tingimusi halvaks.\[30\]

- Heliklass C: Eeldatud, et 50 kuni 65% elanikest hindab akustilisi tingimusi heaks või väga heaks. Vähem kui 30% hindab akustilisi tingimusi halvaks.

- Heliklass D: Eeldatud, et 30 kuni 45% elanikest hindab akustilisi tingimusi heaks või väga heaks. 25 kuni 50% hindab akustilisi tingimusi halvaks.

<table>
<thead>
<tr>
<th>Heliisolatsioon korterite vahel</th>
<th>Klass A</th>
<th>Klass B</th>
<th>Klass C</th>
<th>Klass D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohumüra isolatsiooni indeks R'w, dB</td>
<td>63</td>
<td>58</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>Lõögimürataseme indeks L'nw, dB</td>
<td>43</td>
<td>48</td>
<td>53</td>
<td>58</td>
</tr>
</tbody>
</table>

Elamute akustikaalane klassifikatsioon vastavalt Põhjamaade INSTA 122 standardi eelnõule.\[30\]
Soovitused hoonetesisese kommunikatsiooni hõlbustamiseks:

Esikud ning trepikojad võivad luua akustiliselt keerulisi piirkondi, kuna nad sisaldavad üldiselt kõvemaid pindu. Vaipade, seinakattematerjalide, laeplaatide ning kardinate paigaldamine on vaid mõned moodused akustiliste probleemidega tegelemiseks.[31]

Põrandaviimistlus, seinapinnad ning laed tuleks valida nii, et juhuslik mürä poleks põhjendamatult võimendatud (nt kõvad põrandapinnad, nagu marmor ning terratso), mis võimaldab nägemispuudega inimestel kuulda samme, kuid samas tekitab nägemispuudega inimestele segadust.[26]

Nägemisraskustega inimesed saavad hoonega kommunikatsioonide olulist infot neid ümbritsevatest keskkonnahelidest (alates tagasisidest, mis saadakse oma sammude helidest ning valge kepi kokkupuutest tasapindadega) kuni taustahelideni (nt lähenevad sammud, purskaevud jne).[31]

Nägemispuudega inimestel võib tekida suurtes hoonetes ligipääsetavate liikumistrajektooride leidmisel probleeme ning oleks soovitatav tagada mõned kujunduslikud muudatused, et teisejärguliste koridoride helikvaliteedi mõju oleks erinev peateede omast (nt muutuste kaudu põrandaviimistluses).[26]

Lae vormid tuleks kujundada selliselt, et ei tekiks kaja. Märkus: Kuppellaed kipuvad heli moonutama.[26]

Müra vähendamiseks kasutatavad abinõud:[32]
- hoonete korralik planeerimine, nt elu- ning lõõgastusuusumele distantsseerimine müratekitajast;
- välisseinte heliisolatsioon, teatud akende ning uste isolatsioon, kohtkindlad klaasist paigaldises ventilatsiooniga;
- heliisolatsioonikilpide paigaldamine fassaadi;
- helikaitse maastike, näiteks mullete, seinte või istanduste abil;
- Müra vähendamiseks on kõikjal vaja kiiresti rakendada süsteemse lähememise strateegilisi tegevusi.
4.4. Taktiilne kommunikatsioon


Inimeste kompimisvõimekuse erinevus nõuab, et kõik tegevused, mis on seotud mingite manipulatsioonidega, nt käspuudest hoidmine, nuppudele vajutamine, uste avamine jms, oleksid teostatavad võimalikult lihtsalt, mugavas asendis ja ilma erilise pingutusega. Mõnedes keskkondades kasutamisel võib takistuseks olla ka inimese kasv või proportsioonid. Tuleb arvestada, et on inimesi, kelle pikkus on vaevatud meetrit, ja neid, kelle pikkust üle kahe meetrit.[2]

Taktiilset informatsiooni saadakse kompimise teel ning see on nägemispuidega inimestele äärmiselt oluline neid ümbritseva maailma tunnetamisel. Nägemispuidude põhiliseks probleemiks on see, et ei saada informatsiooni kätte, kuna see on enamasti visuaalne. Seega on nägemispuiduga inimesed mõneski osas nagu elust ära lõigatud, ei tulda isegi väga paljude asjade peale, mida nägijad näevad, ning ei osata siis ka nende kohta küsida.[24] Seetõttu on nägemispuiduga inimeste jaoks äärmiselt oluline taktiilse informatsiooni ja viitade olemasolu ja kättesaadavus.
TAKTIILSELT TUVASTATAVAD PINNAD

(Detectable Surfaces) [33]

Ruumis orienteerumisele ja ohtude eest hoiatamisele aitab kaasa reljeefsete ja märgatavate pindade kasutamine. See võimaldab nägemispuudega inimestel iseseisvalt ja turvaliselt ruumis ringi liikuda. Avalikus ruumis ja teede ristumiskohtades, kus nägemispuudega inimese hakkamasaamine on pigem väljakutset esitav, on taktiilne katend äärmiselt kasulik orienteerumisel ja tee leidmisel.

Kohta näitav plaadirida. Oma funktsiooni täitmiseks vajavad taktiilsed tähised puhastamist.
Melioransi, R.-H., Ülemiste, Tallinn 2012

Suunda näitavad plaadid.
Vaikla, T.-K., Brüssel, 2011

Taktiiline teekatte riba, mis näitab ukse asukohta.
Vaikla, T.-K., Brüssel, 2011

Kohta näitav plaadirida. Oma funktsiooni täitmiseks vajavad taktiilsed tähised puhastamist.
Melioransi, R.-H., Ülemiste, Tallinn 2012

Suunda näitavad plaadid.
Vaikla, T.-K., Brüssel, 2011
Hoiatava ja juhtiva taktiilse katendi üldised nõuded:
Suunda näitavad plaadid (a):
- 34 mm laiused paralleelsed reljeefsed pinnad;
- igal 300 mm × 300 mm suurusel plaadil 4 reljeefset paralleelset pinda;
- joondatud piki teekonna liikumise suunda.

Ohu eest hoiatavad (braikivi) plaadid (b):
- 35 mm-se diameetriga väljaulatuvad punktid, mis asetsevad ruudukujuliselt, plaadi servadega paralleelselt;
- plaadi suurus on 300 mm × 300 mm;
- nominaalne laius 600 mm (300 mm laiuse trepimademe puhul);
- asetatud teekonna liikumissuunaga risti/vertikaalsest.

Kohta näitavad (braikivi) plaadid (c):
- 23 mm-se diameetriga korrapäratult asetsevad väljaulatuvad punktid;
- iga plaadi suurus 300 mm × 300 mm;
- kogumõõt 600 mm × 600 mm;
- asetatud ja muutuvad vastavalt teekonna suunale.

Väljaulatuvate punktide ja triipude kõrgus:
- 5 mm.
Ohu eesti hoiatamiseks ja teesuuna näitamiseks reljeefset katendit või pinda vajavad objektid:

- korruste muutumine
- trepid ja astmed
- kaldteed
- äärekivi katkemine ja jalakäijate ülekäigurajad
- kõnniteed
- eskalaatorid
- liftid
- hoonetesse ja asutustesse sisenemised
- taktiilsed majajuhiid ja kaardid
- infopunktid ja teenindusletid
- ohud ja takistused
- käsipuud
- transporditeenused

Taktiilne inforiba maas.
Levald, A., Milaano lennujaam, 2004

Taktiilne teeviida süsteem.
Vaikla, T.-K., Brüssel, 2011
Asukoha tuvastamine

Juhtivad taktilised plaadid:
• mööda plaanitavat teekonda ja paralleelselt liikumissuunaga.

Ohu eest hoiatavad taktilised plaadid on vajalikud:
• korruste muutudes, sh treppide alguses ja lõpus, kaldteedel, eskalaatoritel jne;
• katkevate äärevide, jalakäijate ülekäiguradade, sh ristuvate teesuundade (kogu laiuse ulatuses) korral;
• hoonetes ja avalikku ruumi sisemist ja väljumistel;
• majjuhiste, kaartide, infopunktide/teeninduslettide, ukseavade, lifti nuppude ja uste jne ees.

Paiknemist näitavad plaadid:
• Taktiilsete teejuhtide liitekohtades/ristumisteedel, et viidata võimalikule liikumissuuna muutmisele.

Materjalid
Taktiilsete teeviitade puhul tuleks kasutada nii kuivades kui märgades kliimatingimustes libisemiskindlaid ja vastupidavaid materjale. Metallmaterjalid ei ole soovitatavad, kuna näiteks roostevaba teras on eriti märjalt väga libe ning võib seetõttu kasutaja ohtu seada. Ükskõik missuguse taktilise teeviida puhul kasutatav materjali tuleks sellele vastavalt ja regulaarselt hooldada, et ta saaks täita oma eesmärki.

TEISED TAKTIILSET TUVASTATAVAD MAASTIKUELEMENDID/MÄRGID

Kui teised taktiilsetelt tuvastatavad maastikuelemendid, nagu äärekivid, piirded, seinad, käsipuud, istutatud hekid, taktiilised esemed jms, on disainitud just teekonna läbimiseks ilma taktiilsetee juhul.

Nad võivad aidata liiklejal tajuda välisruumi suurust ja selle piire. Nägemispuiduga inimesed liiguvad ja orienteeruvad välisruumis, kasutades taktiilsetelt tuvastatavaid pindasid ja maastikuelemente, nagu kõnnitee servasid, mis on orientieriks, et liikija ei kahjusta diagonaalt. Pimedates kohtades, nagu tunnelid, võib kaaluda taktiilsete pindade integreerimist, mis aitaks nägemispuiduga inimesel sellistes olukordades teed leida.

Kui taktiilsete märguvad paigutuses tekkiva ümberkorraldus, siis tuleks need kindlasti vastavalt märgistada, et liiklejad saaksid seda lugeda. Näiteks võib liiklejatel olla keeruline teed leida ja orienteeruda see teel. Informatsiooni edastamisel tuleb kindlasti arvestada ka nägemispuudega inimest, lisades tavakirjale lisaks Braille' kirjas tekst.

Tajutavad märgid (*Sensory cues*)
Taktiilselt tajutavad märguanded, mis stimuleerivad kasutaja puutetundlikkust, võivad osutuda kasulikuks viidete loomisel avalikus ruumis. Eelnevalt mainitud tuvastatavate maastikulementide märgatavus võib aidata kasutajat, eriti nägemispuudega inimesi, teekonna leidmisel. Siseruumides on probleemiks orienteerumine. Suureks abiks oleks oleks maas olev liist, mida saab tunnetada nii jalatalla kui valge kepiga ning mis annaks märku teede hargnemisest või ukse asukohast. Suuremates ostukeskustes saaks sellisel meetodil viidata infopunkti asukohale, kust nägemispuudega inimene saaks abi küsida. Vääksemate ostukeskuste puhul annaks see võimaluse ärä oppida poodide asukohad.\[24\]

Peale tee leidmise hõlbustamise võimaldavad taktiilsed kunstiteosed, nagu skulptuurid, seinakujundused ja madalreljeefid, munakiviteed jms, vahetud kontakti kaudu kasutajal rohkem suhestuda ümbristseva keskkonnaga. See rikastab kasutaja kogemust ka selle ümbruskonnaga.

Erinevused materjalides
Pinnakattematerjalide erinevate tekstuuride ja mustrite kasutamine välisruumis on abiks kasutajale, eriti nägemispuudega inimestele, tuvastamaks ja eristamaks ümberkaudseid piirkondi. Näiteks välisruumis asuvate istepinide juurde suunav põrandamaterjal võib olla käsitletud erinevalt, et vahet teha aktiivsete ja passiivsete puhealade vahel. Selline materjalide kasutusviis aitab nägemispuudega inimestel neile peale astudes erinevatel aladel vahet teha.

Taktiilsed ukseavajad
Hoonete sissepääsudele ligipääs nõuab ukse suuruse, kaalu ja konstruktsiooni tõttu teinekord omajagu pingutust. Taktiilsed ukseavad, nagu lülitite või nuppude lisamine uste juurde võib abistada erivajadustega, näiteks liikumispoodega kasutajat hoonetesises sisemenisel. Selliste ustele sissepääsude juurde peaks olema tagatud taktiilne teejuhis. Avalikke teenuseid pakkuvates asutustes, nagu hotellides või haiglates, võiks toanumbrid olla sörmedeega loetavad.\textsuperscript{24}
TAKTIILNE INFORMATSIOON

Taktiilne kaart ja viidad, taktiilne kujutis, Braille’ kirja

Taktiilsed kaardid ja viidad ning Braille’ kirjas informatsioon võimaldavad nägemispuudega inimestel üldiselt aru saada ja ruumiliselt ette kujutada neid ümbristeva keskkonna struktuuri. See võib osutuda väga kasulikuks, lihtsustamaks orienteerumist ja tee leidmist avalikes ruumides ja linnakeskkonnas. Audiosignaalide või RFID-e integreerimine kaartidesse ja viitadesse parandab nende kommunikatsiooni kvaliteeti veelgi.

Linnakeskkonnas puudub nägemispuudega inimestel juurdepääs informatsioonile, millised ja kus on uued ehitised. Selles olukorras oleks suur abi reljeefsetest linnakaartidest, mis aitaksid nägemispuudega liiklejat aidata saada erinevatest rajoonidest ja tänavate ristumistest.


Samamoodi peaksid taktiilselt tuvastatavad märgistused juhatada ka seina integreeritud taktiilse informatsioonini. Üheks võimalikuks lahenduseks oleks taktiilsete hoiatussignaalide paigaldamine taktiilse informatsiooni, näiteks ukseavade juurde. Teiseks võimaluseks, kuidas kasutajal seinal olevast taktiilsest infost teavitada, oleks mööda seina kulgeval käsiühul Braille’ kirjas teavituse tagamine.


Samamoodi peaksid taktiilselt tuvastatavad märgistused juhatama kasutaja ka seina integreeritud taktiilse informatsioonini. Üheks võimalikuks lahenduseks oleks taktiilsete hoiatussignaalide paigaldamine taktiilse informatsiooni, näiteks ukseavade juurde. Teiseks võimaluseks, kuidas kasutajal seinal olevast taktiilsest infost teavitada, oleks mööda seina kulgeval käsiühul Braille’ kirjas teavituse tagamine.

*Radio-frequency identification (RFID),
Üldised nõuded taktiilsetele kaartidele, juhistele, viitadele ja teostele:

- Peavad olema paigaldatud hoonete peasissepääsede juurde ning neile peab olema tagatud kohene juurdepääs.
- Tuleb tagada kasutaja ja toote vastastikune toimimine ning lihtsustada taktiilset kasutatavust.
- Peavad olema märgistatud taktiilse teejuhise või mõne muu taktiilselt tuvastatava vihjega.
- Taktiilne teejuhis ei tohi olla häiritud.
- Peavad paiknema pinnakatest 900–1000 mm kõrgusel horisontaalsel pinnal või maksimaalselt 45° nurga all.
- Tuleb näidata põhilisi väljapääse, põhilisi huviojekste ja teenuseid pakkuva asutusi.
- Kaardi tausta ja väljulatuva tekstilise informatsiooni vahel peab olema värvikontrast.
- Värvikontrast peab olema ka muu ümbruskeskkonna.
- Tuleb tagada Braille' kirja olemasolu.
- Väliskeskkonnas tuleb kasutada vastupidavaid, ilmastikukindlaid ja meeldivalt tajutavaid materjale.
- Tagada asjakohane valgustus.
- Tagada audiosignaal, kus vajalik.
- Tagada 300 mm-ne vahemaa taktiilse teejuhise ja taktiilse informatsiooni vahel.
- Taktiilse informatsiooni suund peab olema vastavuses kasutaja vaatamissuunaga.
Taktiilne tüpograafia
• Taktiilne tüpograafia peab kasutama sans serif kirjatüüpe. ADA ei soovita kirjadekoratsioone ja stiile (nt kaldkirja).

• Ka taktiilne kiri on paremini loetav mitte läbivalt suurtähelisena, vaid suurtähtede ja väiketähtede vaheldumisel.

• Taktiilne kiri ja Braille’ kiri peaksid olema 0,8 mm kõrgusel taustast (ADA).

• Taktiilse graafika ja muu graafika vahel peab olema vähemalt 10 mm.

• Taktiilse kirja suurtähe kõrgus peaks jääma 16 ja 55 mm vahele.

• Taktiilise kirja kirjatüübi “O” peab olema min 55% ja max 110% suurtähe “I” kõrgusest (ADA)

• Tähekõrgus peab olema min 16 mm ja max 51 mm suurtähe “I” põhjal (ADA).

• Tähe joonepaksus olgu max 15% “I” tähe kõrgusest.
Braille’ kiri

Kaasavas elukeskkonnas on Braille’ kiri mitte ainult väärtuslik kommunikatsioonivahend selle lugejatele (keda on küllalt väike hulk nägemispuudega ja pimedatest kasutajatest), vaid ka visuaalne ja taktiilne kogemus kõigile keskkonna kasutajatele. Braille’ kirja kasutamine tuleks keskkonda sisse planeerida juba projekti algfaasis, sest on oluline, et selle asukoht oleks hästi läbi mõeldud ning pimeda kasutaja jaoks ka taktiilse rajase viidatud.

Braille’ kiri peaks olema märgitud viitadel koos sarnaste tekstide/diagrammidega, mis on mõeldud nägemispuudega kasutajatele. Taktiilised kaardid, kuhu ei ole lisatud Braille’ kirjas teksti, ei täida oma eesmärki, kuna informatsiooni kättesaadavus ei ole täielik. Braille’ kirja kasutamine käisipuude otstes on tee leidmisel väga kasulikuks informatsiooniallikaks nägemispuudega inimestele.

Braille’ kirja üks levinumaid kasutuskohti on liftinuppudel.


TOOTEKOGEMUS

Tooded mõjutavad inimese mõtlemist ja käitumist. See tuleb eriti nähtavale interaktiivse disaini puhul, kus keskendutakse sellele, kuidas inimesed oma elus reaalselt kasutavad tooteid, teenuseid ja tehnoloogiat. Interaktiivsete toodete toimimine on põhiliselt seotud kasutaja tootekogemusega.

Nagu skeemilt võib näha, kattub enamik harudest vähemalt osaliselt kasutajakogemuse disaini valdkonnaga (user-experience) – see tegeleb kasutaja kõigi kokkupuuteaspektidega (visuaalse, interaktiivse, häälelisega jne), mis on seotud toote võiteenusega, ning tagab, et need toimiksid harmoonias. Interaktiivne disain määrab ära kommunikatsiooniteenuste kasutamisest saadava kogemuse kvaliteedi väärtuse selle kasutajale. Füüsiliselt katsutavate toodetega võrreldes põhinevad kommunikatsiooniteenused kogemustel.

Disaini fookus on ajaga nihkunud selle algeldes kujult esemetele ja informatsioonile, et võimaldada kasutajakogemuse, ning füüsilistest ja tunnetuslikest inimfaktoritest emotsionaalsete, sotsiaalsete ja kultuuriadade kontekstide, kuhu toode või teenus on asetatud. Kogemused ilmnevad toote ja selle kasutaja vastastikusel toimimisel. Iga kasutaja tegevus, mis on seotud mõne tootega, on seotud ka toote kasutamisest saadava kogemusega. Siiski tuleb silmas pidada, et kuigi tegevused on tootekogemuse keskmeks, ei ole need sellega võrdväärsed.

Kattuvad interaktiivse disaini distsipliinid.

Kommunikatsioon
Kasutajakogemus sisaldab:

Kasutaja iseloomuomaduste ja konkreetse konteksti kõr-vutamist, mis iganes toodet kasutades ilmnevate tegurite, formaalsete ja funktsionaalsete iseloomujoontega. Kasutajad kasutavad tooteid oma eesmärkide, vajaduste, kultuuriliste ootuste, füüsilise seisundi ja emotsioonide kontekstis. Tooded saavad oma käegakatsutavate ja mitte käegakatsutavate kvaliteediamaduste mõjutada seda, kuidas kasutajad neid kasutavad.

Tuleb silmas pidada ka seda, et haridustase ning sotsiaalsed oskused mõjutavad inimese kommunikeerumisvõimeid ning sellest tulenevalt ka võimekust tooteid ja teenuseid kasutada. See, mida nimetame kasutaja vääruseks, tuleneb vastastiku kusest toimest, mida toode pakub ja mida kasutaja lisab oma eesmärkide, vajaduste ja piirangute nimel.
Hästi disainitud interaktiivsete lahenduste omadused

Usaldusvääärne: Tooted ja teenused peavad koheselt tõestama oma usaldusväärust. Tooteid ja teenuseid kasutades ei tohi jääda muljet, nagu oleksid nad ühel või teisel moel võimalised meile liiga tegema, müüma meie personalset informatsiooni, katki minema – ehk teisisõnu, reetma meie usaldust.

Sobiv: Interaktiivse disaini lahendused peavad olema kohandatud selle looja kultuuri, situatsiooni ja kontekstiga. Hea disaini tagamiseks on hädavajalik aru saada konkreetsest situatsioonist ning sellest emotsionaalsest kontekstist, kuhu toode või teenus on disainitud.

Nutikas: Tooted ja teenused, mida me kasutame, peavad olema nutikamad kui selle kasutaja. Nad peavad olema suutelised tegema asju, mida inimesed teha ei suuda – kiiresti arvutama, eksimatult mäletama fakte ning leidma süsteemseid mustreid. Nad peavad tegema tööd, mida inimesed üksi ei ole suutelised tegema.

Reageeriv: Me peame olema veendunud, et toode sai aru ja asus täitma talle antud käsklust. Me tahame olla ka informeeritud sellest, mida toode või teenus hetkel teeb. Kui tootele antud käsklusele tagasiside saamiseks kulub aega rohkem kui 1 sekund, siis hea disaini puhul annab toode märku, et ta on käsu käitse saanud ning asub seda täitma.

Tark: Mingi toote või teenuse esmakordsel kasutamisel tuleb ette vaimustushetki, kui avastad, kui tark ja ettenägelik see toode või teenus on. Nauding ongi üks ülev tunne, mida on võimalik kogeda ning mis jätab kauaks hea tunde. Targad tooted ja teenused suudavad ette näha kasutaja vajadusi ning need rahuldata ettearvamatus meeldival viisil.

Mänguline: Mänguliste toodete ja teenuste näol ei ole tingimata tegemist mängusjadate või mängudega. Läbi tõsise mängu saame leiutada uusi tooteid, teenuseid ja funktsioone ning proovida nende kasutatavust. Hästi disainitud tooted ja teenused ei soodusta kasutajal vigade tegemist, vaid pigem teevad kasutajatele vigade tegemise keeruliseks, luues hulganist hoiatussignaale, mis tekitavad kasutajas närvilisust ning ebameeldivustunnet.

Nauditav: Kui tooteid või teenuseid ei ole mugav ja nauditav kasutada, siis me pigem väldime nende kasutamist, kui see ei ole just hädavajalik ega mõõdapääsamatu. Tooted ja teenused võivad pakkuda naudingut kahel eriliselt: esteetiliselt ja funktsionaalselt. Et toode või teenus oleks meile atraktiivne, peab see hästi töötama.

Kaasava elukeskkonna juhendmaterjal 117 Kommunikatsioon
Selleks et inimese ja toote vaheline suhtlus oleks sujuv ja meeldiv, tuleb tähelepanu pöörata kasutusmugavusele. Kõrvalolev skeem tutvustab kasutusmugavust mõjutavaid tegureid. Skeemil on näidatud kaks ringi, sisemisel ringil on kujutatud kasutatavuse kriteeriumid ning välismisel ringil subjektiivsed, kasutajale naudingut pakkuvad kriteeriumid.

Kasutaja tootekogemuse seisukohalt tuleb arvestada sellega, et kõige loogilisem ja efektiivsem siseringus on ehitatud toode, mis ei eraldiksi üldse olla inimesele nauditav kasutada. Pigem võib toote mõningane sihipärane ebaratsionaalne teada, mis võib toote kasutuskogemuse põnevaks ja meeldejäävaks. Kasutajale kasutamise kriitiline põhineb kasutusmugavuse ja kasutajakogemuse kriteeriumid.

**Kasutusmugavuse ja kasutajakogemuse kriteeriumid.**
Preece, J., Rogers, Y., Sharp, H., Interaction design: beyond human computer interaction, 2002
VEEBIKESKKOND JA KASUTAJALIIDES

Üha rohkem on avalikke teenuseid pakkuvates asutustes hakatud kasutama iseteenindamist ning kommunikatsiooni toetavaid tehnoloogiaid. Sellised seadmed ja teenused on saanud osaks meie igapäevaelust ja elukeskkonnast. Et need lahendused täidaksid oma eesmärki, peavad kasutajad suutma neid iseisvalt mugavalt kasutada.[40]

Kommunikatsiooni planeerides tuleks kindlasti silmas pidada avalikus ruumis kuvari kaudu edastatava informatsiooni kättesaadavust kõikidele kasutajagruppidele. Interaktiivne kommunikatsioon on lihtsalt ja kiirelt õpitav noortele ja nendele kasutajatele, kellel on osavad käed, hea nägemine ning kuulmine. Kasutajatele, kellel on nägemis- või kuulmispuue, liikumispuue või madal kognitiivne võimekus, võib aga sellisel edastatav informatsioon jääda piiratud, kui nende vajadusi süsteemi kavandamisel ei arvestata.[2]

Paljud probleemid keskkonna kasutamisel tekivad erivajadustega kasutajatel seal, kus tavakasutaja neid ise kujuta ei kujuta. Seetõttu on interaktiivse süsteemi planeerimisel oluline roll selle testimisel kõikide kasutajagruppide ja spetsialistide peal – mitmed süsteemi nõrkused tulevad alles nii välja. Vaegnägijatest kasutajad ei näe ekraanilt teksti lugeda enne, kui see on piisavalt suurendatud, kuulmispuudega kasutajal peab olema võimalus vajaduse korral helitugevust reguleerida. Paljudele erivajadustega (sh eakatele) kasutajatele on interaktiivse lahenduse puhul üks olulisemaid aspekte kommunikatsiooni süsteemsus ja järjepidevus.

Interaktiivseid lahendusi kavandades peab arvestama, et kasutaja puutub lahendusega kokku külalt harva, peab meelde jätma erinevate seadmete kasutusjuhised ning on läbinud heal juhul vaid minimaalse treeningu. Keskkond peab adapteeruma piiratud sensoorsete võimetega kasutajate liigipääsetavust toetavate tehnoloogiatega nagu kõnesüntesaator ja tekstisuurendaja.

Üha enam kasutatakse avalike teenuste kättesaamiseks näiteks puutetundlikel ekraanidel navigeerimist. Nägemispuudega inimeste jaoks on puutetundlikud ekraanid aga ilma varasema kogemusega või taktiilse lisata kasutud, kuna nende kasutamisel saadav tagasiside baseerub vaid visuaalsel informatsioonil.[24]
Seade
Ekraan
Erineva nägemusteravusega kasutajatel võib olla keeruline interaktiivse seadme ekraanilt informatsiooni ühtmoodi kätte saada, lisaks unustavad paljud kasutajad oma prillid autosse või ei kanna neid avalikus kohas. See tähendab, et eri tüüpi nägemispuudega kasutajate hulk võib olla tegelikult suurem, kui tavauuringutest selgub.


Klahvistik
Standardipärane klahvistik on pimedale kasutajale hädavajalik. Numbriklahvide jaoks on kaks tavapäraselt olulisi:
- mobiiltelefoni tüüpi klahvistik,
- kalkulaatori tüüpi klahvistik.

Interaktiivsetel seadmetel on üldjuhul kasutusel mobiiltelefoni tüüpi numbriklahvistik. Pimedale klahvistik peaks olema võimalik lihtsalt liigutada ekraaniga, kasutades olulised kasutamislihtanded.


Funktsiooniklahvide värvikood on järgmine:
• punane – tühistusklahv
• roheline – nõustumisklahv
• kollane – parandus/puhastusklahv.

Funktsiooniklahvid peaksid olema nii suured kui võimalik, et tekst nende pinnal oleks hästi loetav ja piisavas kirjasuuruses. Klahvide vahel peaks olema piisav ruum, et neid üksteisest eristada.

Funktsiooniklahvide eristamisel ainult värvikontrastist ei piisa, sest nii jääb värvipimedatel vajalik informatsioon saamata – klahvidel võiks olla ka erinev kuju ja piktogramm.

Kui seadmel on auditiivseid abivahendid, peaksid need olema visuaalselt ja taktiilselt tuvastatavad (nt körvaklappide pesa). Kasutajale võiks pakkuda alternatiivseid privaatsusseadeid: nt häältuvastus või sörmejälg duplikeerimaks PIN-koodi (sörmejälg jälle ei sobi neile kasutajatele, kel pole sõrmi või jäsemeid).

Kasutajaliides
• Kasuta värv, kujundeid ja paigutust, nii et kasutaja saaks need meelde jätta ja vähendada aja- ja energiakulu toimingu sooritamiseks.

• Paiguta elemendid juhtpulid nii, et nad oleksid loogilises seoses juhitava seadmega.

• Kasuta lihtsat keelt ning dubleeri ja täienda teksti piktogrammide ja piltidega.

• Proovi tagada, et tähelepanu koondaks korraga vaid ühte kohta.

• Kasuta loogilist struktuuri, et edendada mälu ja õppimisvõimet.

• Korraga meelespeetavaid infokilde ei tohi olla rohkem kui 5.

• Hierarhia puhul ära kasuta enam kui kolme tasandit.

• Paku mugavat võimalust kiiresti algpunkti naast.

• Kõik toimingud peavad pakkuma kasutajale arusaadavat ja asjakohast tagasisidet.

• Kõik toimingud peavad olema kohe ja lihtsalt tagasivõetavad. Proovi vastastada ebaõnnestuvalt toiminguid mitmekülgse testimisega.

Oluline on veebikeskkonna vastavus World Wide Web Consortium'i (W3C) standarditele ja Web Content Accessibility Guidelines 2.0 (WCAG) standarditele. Need sisaldavad nõudeid, mis teevad tajuprobleemidega inimestele veebi kasutamise ja mõistmise lihtsamaks.

- Visuaalelemendid peab alati olema tekstiline alternatiiv, et see oleks ligipääsetav abivahendite (Braille' kiri, suurendus, kõnesüntesaator jms) kasutajatele (WCAG 1.1).

- Värvidega esitatud teave vajab alternatiivesitust (nt elemendi, toimingu või menüüelemendi eristamisel, kasutajale tagasiside andmisel) (WCAG 1.2).

- Dokumendid tuleb organiseerida nõnda, et nad oleksid loetavad ka ilma stiililehtedeta (WCAG 1.3).

- Sisu peab olema tausta suhtes kontrastne ja eristuv. Esmatähtis informatiooni peab olema maksimeeritud (WCAG 1.4).

- Kõiki funktsioone peab olema võimalik käivitada ka juhtimisesseadme (Braille' kirjaga varustatud) klaviatuurilt (WCAG 2.1).

- Kasutajal peab olema piisavalt aega, et lugeda ja keskkonda kasutada (WCAG 2.2).

Kasutada ei tohiks lahendusi, mis võivad põhjustada haigushooigu. Veebileht võiks vältida vilkumist (nt esituse muutmist kindlate ajavahemike tagant jms), enne kui kasutajaliides seda lubab (WCAG 2.3). Tuleb arvestada, et teatav vilkumissagedus võib kasutajal valgustundlikkuse tõttu esile kutsuda haigushoo. Epilepsia puhul võib sümptomid esile kutsuda vahelduv ere ja välkuv valgusääritus, raskesti loetav kirjatüüp või optilised mustrid. WCAG soovitab mitte vilgutada elemente rohkem kui 3 korda ühe sekundi jooksul. Keskkonna vilkumisturvalisuse kontrollimiseks on olemas mugav allalaetav tööriist. [42][43]

Kui keskkonnas kasutatakse dünaamilisi lahendusi, ei tohi need vähendada keskkonna loetavust või äratuntavust. Keskkonna navigatsioon peab olema lihtne ja loogiline, lingi sisu peab olema üheti mõistetav enne sellele vajutamist, kõik lehed peavad olema pealkirjastatud. Elementid võiks olla eristatud viisil, mis võimaldab navigatsiooni kirjeldamist (suunamisel, juhiste andmisel) (WCAG 2.4)
Keskkonna keelekasutus peab üheselt mõistetav ja tekst lühi-kestes paragrahvides ja hästi loetav. Veebis tuleb tarvitada digitaalseks kasutuseks kujundatud kirjatüüpe (WCAG 3.1). Alternatiivina võib luua lühiversioni veebilehe sisust.[45]


Kui linkide, menüüde jm ressurside juures on kasutatud HTML-standardi väliseid programseid vahendeid (java, flash javascript, jt), tuleb loetavuse tagamiseks dubleerida need lahendused ka HTML-is (WCAG 6.3). Kasutajal peaks olema võimalus vajaduse korral teki suurust ja keskkonna värvi-kontrastust muuta.

Hea näide: http://www.accessiblewebsite.org.uk/

Informatsioon tuleb paigutada vastavalt sisulisele tähtsusele, nii et olulised jõutaks kõigepealt.[42][43] Arvestada tuleks, et inimsilm liigub ekraanil F-kujuliselt.
Keskkond

Valgus

Müra ja keskendumine
Mürakeskkonnas kasutaja keskendumisvõime ja tähelepanu vähenevad ning seadme kasutamise aeg pikeneb. Loe lähemalt auditivse kommunikatsiooni peatükist.

Privaatsus
Kasutaja peab saama oma vajalikud toimingud teostada nii, et confidentsiaalne informatsioon oleks kaitstud. Suurem tekst või audioabi ei tohiks muuta informatsiooni möödujale paremini kätesaadavaks.

Takistused
Vältida tuleks reklamaatavhit, valgustite jmt asetamist kommunikatsooniahendite ette või liikumisteedele.

Aeg
Paljud kognitiivsete häiretega vanemad inimesed ei soovi, et neid interaktiivsete teenuste tarbimisel kiirustatakse, kuid tihti katkestab keskkond pika mõtlemise peale nende külustussessiooni. Sellises olukorras oleks hea, kui kasutajal oleks võimalik süsteemi poolt määratud sessiooni pikkust muuta. Veelgi parem oleks, kui see informatsioon salvestuks kasutaja isiklikes seadetes.
4.6. Standardid

Visuaalne kommunikatsioon


7. ETSI ES 202 432: 2006 Human Factors (HF); Access symbols for use with video content and ICT devices.

8. ETSI ETS 300 375: 1994 Human Factors (HF); Pictograms for point-to-point videotelephony.

9. ETSI TR 070: 1993 Human Factors (HF); The Multiple Index Approach (MIA) for the evaluation of pictograms.


16. IEC 60417 Graphical symbols for use on equipment.


20. ISO 3461 General principles for the creation of graphical symbols.


34. ISO 17398:2004 Safety colours and safety signs – Classification, performance and durability of safety signs.


36. ISO/IEC 19765:2007 Information technology – Survey of icons and symbols that provide access to functions and facilities to improve the use of information technology products by the elderly and persons with disabilities.


40. ISO/IEC 80416-4: 2005 Basic principles for graphical symbols for use on equipment – Part 4: Guidelines for the adaptation of graphical symbols for use on screens and displays (icons).

41. ITU-T E.121: 1996 Pictograms, symbols and icons to assist users of the telephone service.


44. JIS T 0103: 2005 Design principles of pictorial symbols for communication support.


52. **EVS-EN 14388**:2007 Liiklussüüria tõkkeid. Spetsifikatsioonid.


56. **EVS-EN ISO 24500**:2010 Ergonomics – Accessible design – Auditory signals for consumer products.


59. **ISO 23600**:2007 Assistive products for persons with vision impairments and persons with vision and hearing impairments – Acoustic and tactile signals for pedestrian traffic lights.

60. **EVS-EN 12368**:2006 Liikluse reguleerimise vahendid. Signaalseadmed.


62. **CLC/TS 50509**:2007 Use of LED signal heads in road traffic signal systems.

**Taktiilne kommunikatsioon**

63. **CEN/TS 15209**:2008 Tactile paving surface indicators produced from concrete, clay and stone.

64. **EVS-EN 1332-5**:2006 Identification card systems – Man-machine interface – Part 5: Raised tactile symbols for differenciation of application on ID-1 cards.


69. ISO 23600:2007 Assistive products for persons with vision impairments and persons with vision and hearing impairments – Acoustic and tactile signals for pedestrian traffic lights.


71. CEN/TS 15209:2008 Tactile paving surface indicators produced from concrete, clay and stone.


Interaktiivne kommunikatsioon


76. EVS-EN 1332-1:2009 Identification card systems – Human-machine interface – Part 1: Design principles for the user interface.

77. EVS-EN 60073:2002 Basic and safety principles for man-machine interface, marking and identification – Coding principles for indicators and actuators.


86. **IEC/TR 61997**: 2001 Guidelines for the user interface in multimedia equipment for general purpose use.


5. Liikumine & liikumisteed
Inimese üks põhiõigusi on liikumisvabadus. Liikumise eesmärgiks on jõudmine ühest punktist teise. Liikuja soovib seda teha võimalikult kiiresti, sujuvalt ning vähese jõupingutustega. Liikumine on terviklik ja pidev tegevus, mille lähte- ja sihtpunkt on üldjuhul hoonete siseruumides, kuid teekond võib lăbida erinevaid välisruumimisi ja kasutada võidakse mitmesuguseid liikumisvahendeid.

Pidevuse põhimõtte kohaselt peavad liikumisteed olema katkematu ja takistustevabad ning ühendatud sidusateks võrgustikeks. Liikumise sujuvus on üheks kõige olulisemaks kasutamisvõimaluseks nätajaks kõigile kasutajagruppidele. Kasutaja jaoks ebatõrke ja eksitavad on liikumistee lõigud, mis pole liikumist alustades selged ja ülevaatlikud, ei ühenda olulisi sihtpunktke, ei vikaugeri või sisaldavad ettenägematuid takistusi.

Välisruum algab hoonest väljumisega ning lõpeb sihtkohas hoonesse sisenemisega. Vahepeale jääb arvukalt erinevaid privaatseid, poolavalikke ja avalikke ruume ning üleminekuid nende vahel. Avalikud ruumid peavad olema kõigile ligipääsetavad ja neis pakutavad teenused kättesaadavad ning kasutatavad.

Meid ümbritsevate üha kiirenevate muutusteega kohanemine ei ole lihtne. Selle leevendamiseks tuleb senisest enam väärtustada inimeste põhivajadusi, luua välisruumis võimalusi aja maha võtmiseks ning kohti toimuva üle järele mõtetemiseks, omavaheliseks rahuliikku suhtlemiseks.

Inimese liikumisvöime muutub pidevalt kogu eluea jooksul. Näiteks raske kandam teeb liikumise keerulisemaks ka heas füüsilises vormis olevale inimesele. Üks läbimõtlemata aste võib osutuda mõnele kasutajagrupule ületamatuks takistuseks, mis jätab ta avalikust ruumist ning teenuste kasutajate hulgast välja.

Üldkasutatavad ehitised linnalikus avalikus välisruumis on nii need rajatised, mille kaudu inimesed pääsevad avalikesse hoonesesse, kui ka tänava, väljakud, haljasalad ja mänguväljakud.[1] Linnaliku välisruumi või linnaruumina käsitletub alevikade ja alevi – aleviku ja alevi ning tiheastustusega maa- asulate (külateskust) kohta.

Takistustevaba väliskeskkond kaasab erinevat tüüpi kasutajaid, tagades neile liikumisvabaduse. Selle võib jagada tinglikult kolmeks osaks:

1. liikumisvabadus avalikel aladel, tänava- ja puhkealadel;
2. liikumisvabadus ehitiste vahetus läheduses ning sisenemisel nendesse;
3. liikumisvabadus kergliiklusteedel ja radadel väljaspool tänava- ja teerumi.

Üldkasutatavad ehitised linnalikus avalikus välisruumis on nii need rajatised, mille kaudu inimesed pääsevad avalikesse hoonesesse, kui ka tänava, väljakud, haljasalad ja mänguväljakud.[1] Linnaliku välisruumi või linnaruumina käsitletub alevikade ja alevi – aleviku ja alevi ning tiheastustusega maa- asulate (külateskust) kohta.

Takistustevaba väliskeskkond kaasab erinevat tüüpi kasutajaid, tagades neile liikumisvabaduse. Selle võib jagada tinglikult kolmeks osaks:

1. liikumisvabadus avalikel aladel, tänava- ja puhkealadel;
2. liikumisvabadus ehitiste vahetus läheduses ning sisenemisel nendesse;
3. liikumisvabadus kergliiklusteedel ja radadel väljaspool tänava- ja teerumi.

Kaasava elukeskkonna juhendmaterjal 135 Liikumine & liikumisteed
5.1. Liiklus ja linnaaruum

Liiklus hõlmab inimeste, kaupade ja informatsiooni asukohamuutusi. Inimeste ja kaupade liikluse korraldus mõjutab samas kõige otsesemalt linnamaastiku kvaliteeti ning seda, kuidas linnaaruum sobib erinevatele kasutajagruppidele. Linnaaruumi parimaks ja säästlikumaks lahenduseks on linna, linnaaruumi, liikluse ja liikluskõrgustike integreeritud planeerimine.[2]


Sidus ja integreeritud linnaaruum.
Printz, D., Städtebau, Bd.1., 1983
Elava linna planeerimine on inimesele hästi kättesaadavate kohtade loomise kunst, mis tegeleb seostega inimeste ja kohtade, liikumise ning linnavormi, looduse ning ehitatud keskkonna vahel. Linna välisruum peab olema inimesest lähtuvas mõõtkavas ja tema liikumiskiiruselt hästi tajutav.\[3]\n
Inimese liikumiskiiruseks on tänapäeval nagu ka sajandeid tagasi umbes 5 km/h ning sellest tuleneb mugav kaugus jalgsi liikumiseks.

Linna säästlikkus tervikuna suureneb oluliselt, kui suurem osa inimeste liikumisest toimub linnas rohelise mobiilsuse vahenditega – jalgsi, jalgratta ja ühistranspordiga. Selle tulemusena väheneb taastumatute ressursside kasutamise vajadus, alaneb saastatus ja müratase ning inimesed tunnevad end sellises linnas turvalisemalt.

Erinevate kasutajate keskmine igapäevase jalgsi liikumise vahemaa. See sõltub nii east, füüsilisest vormist, vajadusest kui ka paljudest teistest asjaoludest.

Printz, D., Städtebau, Bd.1., 1983
Asum
Igapäevane varustus-, teenindus- ja kontaktipiirkond:
kauplused, lasteaed, koolid (põhikool), sotsiaal- ja med. teenindus, ühissöidukite peatused

Linnaosa
Perioodiline varustus-, teenindus- ja kontaktipiirkond:
ärikeskused kultuuriasutused, koolid (gümnaasiumid) töökohad

Liikumisraadiused linnaosa, asumi ja lähiumbruse tasandil.
5.2. Liiklusvõrgustikud

Tänavavõrk peab tagama tänaval liikujatele soodsad ühen-dused elu- ja töökohtade, elukoha ja piirkonnakeskuse ning linnakeskuse vahel, samuti sõitjate, jalakäijate ja jalgratturite liikluse ohutuse ja mugavuse.


Linna liiklusvõrgustikeks on jalgteed, jalgrattateed, ühis-transport, mille peatused on seotud kergliiklusvõrgustikuga, ning individuaalse autoliikluse liikumisteed. Liikluskorralduse peamiseks eesmärks on võimalikult sujuva ja ohutu liikluse tagamine. Ohutu liiklus tuleb tagada kerg- ja autoliikluse eral-damise ning asjakohase parkimiskorraldusega.

5.3. Kaasav tänavamaastik

Elutännavate kavandamisel ja rajamisel on liiklemis-funktsooni pühendatud ülemääraselt suurt tähenduse ja seatud see esiplaanile. Tänava kui inimeste elu- ja liikumiskeskkonna kohta kasutavad liikluse planeerijad jätakse autoliikluse sarnaseid kvantitatiivseid määratlusi. Tulemusena on kohad, mida valitsevad kõige tugevamad liiklusevahendid ehk mootorsõidukid nii suurel määral, et tänavad ei täienda enam elukeskkonda positiivselt.


Elavas, turvalises, säästlikus ja tervislikus linnas on meeldiva linnaelu eelduseks head jalgsi liikumise ja tänaval viimise võimalused. Linnades on jalgsi liikumise sisuliselt märksa rikkam tegevus kui ühendus sihtkohtade vahel. See loob võimaluse kontakttide tekkeks inimeste ja kogukonna vahel, siin on värsked õhud, aja veetmine välisruumis, rõõm elust ja inimestest, kogemused ja informatsioon. Jalgsi liikumine ühendab avaliku ruumi ja selle vorgustike kasutajaid ning lähendab nende huve. Kvaliteetsed välisruumid on edu naabruskonna määravaks osaks.

Kõigile ligipääsetav siseöö kogukonnaarikuga.
Levald, A., Brüssel, Rue de Washington, 2005

Õueala kõigile.
Levald, A., Ørestad, Taani, 2010

Kaasamine on moesõna. Selle sisuks peab olema ennetav osalemine – partnerlus, mitte lahenduse hilisem selgitamine. Kõiki kaasava elukeskkonna kujundamine saab alguse kaasavast kavandamisest, mis:

- seab inimesed kavandamisprotsessi keskmesse;
- tunnistab mitmekesisust ja erinevusi;
- pakub asjakohaseid valikuid seal, kus lihtne lahendus ei ole kõigile kasutajatele sobiv;
- võimaldab paindlikku kasutust;
- loob eelduse ehitiste ja keskkonna loomiseks, mis on kõigile kasutamiseks sobiv ja nauditav.

Tänaruumi kavandamine peab olema avalik, et köök selle kasutamisest puudutatud ja huvitatud osapooled saaksid oma vajadusi väljendada võrdse kohtlemise printsiiibist lähtudes. Täna ei tutvustata näiteks tänavakatendite või tehniliste taristute rekonstrueerimise projekte avalikut, kuigi selle käigus muudetakse tihti jalakäijate kasutatava ruumi ning nende liikumistead, paigaldatavat aarekive, piirdeid jms. Selline kavandamine võib olla küll korrektset normatiividele tuginev, kuid mitte kohapõhine, osalev, kasutajaid õigeaegselt kaasav ja nende vajaduste arvestav.

Hoiduda tuleb selliste teede ja tänavate ehitamise eest, mis on ühekülgsetena kavandatud eelkõige mootorsõidukite liikumisvajadusest lähtudes, anonüümsed ja mitteköitvad, jalgsi ja jalgrattaga liikujatele väheturvalised ja törjuvad ning vähesobivad ühistranspordi korraldamiseks.

Seega peavad tänavaruumi lahendused olema sobivad mitte ainult autodele, vaid suunatud terviklikult kõigile liiklejatele. Vältida tuleb tänavatega külgeva linnaruumi projektide ja hankepöhist arendamist üksteisega halvasti haakuvate lõikudena, mis muudab kogu tänaval jalgsi raskesti läbitavaks ja törjuvaks. Siin on väga oluline olulise kohta on oma jaoks roll tänavat kui ruumilist kavut koos hoidva koordinaatorina.

*Jalakäija on jalgsi või ratastoolis liikleja. Jalakäijaks loetakse ka rula, rulluiske või -suuski, tõukerata või -kelku või muid sellesarnaseid abivahendeid kasutav liikleja (Liikluseasdas).*
Teisi kasutajaid välistav autoliikluse magistraaltee bussipeatusega, kuju pääsemine on raskendatud.
Levald, A., Laagri, Saue vald, 2011


Alles kohtade õige järgnevus võimaldab inimesel laiendada oma peremehetunnet, jõuda privaatselt kasutatavalt ruumiosalt piiratud kasutusega poolvalike kohtade ja üleminekute kaudu üldkasutatavatele aladele.[7]


Põhiline erinevus tänava ja tee vahel on, et tänavalt on otsene juurdepääs selle kõrval paiknevatele ehitistele ning avalikku ruumi. Otsene kontakt ja juurdepääs aktiveerib linnaruumi ning loob positiivseid suhteid tänava ja ümbruse vahel.

Tänav on ruum kõigile! Tänavad peavad olema kujundatud kohaseks erinevatele kasutajatele, pakkuma vaatamisväärsusi ja avalikke teenuseid ning looma tingimused sotsiaalseks suhtluseks.

Eraldatud, kuid avaliku tänavaruumina koos toimivad liikusalad.
Levald, A., Place Espagne, Rue de la Madeleine, Brüssel, 2003

Põhiliikumissuuna ja puhkekohtade eraldamine jalakäigu tänaval.
Levald, A., Dublin, 2011

Kaasav liikumiskeskkond.
Levald, A., Jurmala peapromenaad, 2010
Tänava olulisteks funktsioonideks on:

1. tajutava koha loomine;

2. soodsa liikumise tagamine kõigile kasutajatele;

3. juurdepääsu tagamine hoonetele ning avalikele välisruumidele, kusjuures jalakäijate ligipääs tuleb lähtudes inimeste erinevast liikumisvõimest kujundada soodsaks kõigile vanusegruppidele;

4. parkimine (vajaduse korral);

5. linna taristu mahutamine ning liikumisruumi valgustus.
KERGLIIKLUS- JA JALGTEED

Jalgsi liikumine asendab tõhusalt lühikesi autosõite kuni 2 km kaugusele. Jalgsi liikumiseks soodsat naabruskonda ise-loomustab teeninduse valdav paiknemine kuni 10 minuti (umbes 600–800 m) jalakäigute kaugusel elukohast, mistõttu elanikud võivad sinna mugavalt jalgsi jõuda.

Eraldatud jalg- ja jalgrattateed ning parkimine tänavapuude vahel.

Levald, A., Lygten, Kopenhaagen, 2010

Tänava kui võimalikult ohutu liiklus- ja liikumiskeskkonna kõrval on oluline tänava välisruumi sobivus soodsast elukeskkonnast kõigile selle kasutajatele. Arvestada tuleb kergliikluse ruumivajadust.

Lai takistustevaba könnitee. Lapsevankri ja ratastooliga liikumist takistavad vaateaknaesised lahtised sademeveerennid.

Levald, A., Tartu, 2011

Hästi liikumisvöönditeks jagatud könnitee tänavapuudega.

Levald, A., Dresden, 2003

Sileda asfaltkatetega kergliiklusmagistraal on kõigi kasutajate poolt kõrgelt hinnatud. Arvestada tuleb liikumiskiiruste erinevusega.


Kergliiklustee võib olla tänav ristprofili* üheks osaks, kuid see peab olema autoliikluseks ette nähtud teesast eraldusribaga eraldatud. Praktikas pole selle järgimine alati võimalik ja see ei saa kergliiklustee rajamist välistada. Autoliikluse vajadusteks sõiduradade laiendamine ei tohi toimuda kergliiklusele vajaliku punna arvelt, samuti ei tohi liikluskorraldus seada kergliiklusteel liiklejaid autoliikluse surve alla.

Tänavaäärsed eraldatud jalg- ja jalgrattateed.
Levald, A., Langebro, Kopenhaagen, 2010

*Tristprofili on vertikaallõige läbi sõidutee tegeliku pealispinna sõidutee teljega risti.
Liiklusseadus eristab kergliiklusteid üksikasjalikumalt:

• jalgratta- ja jalgteee on jalgrattaga, tasakaaluliikuri ja jalakäija liiklemiseks ettenähtud eraldi tee või teeesa, mis on asjakohaste liikluskärnike tähistatud. Sõiduteega teede ristmikul on jalgratta- ja jalgteee tee osa;

• jalgrattarada on jalgratta, pisimopede või mooneediga liiklemiseks ettenähtud ja teekattemärgisega tähistatud pikisuunaline sõiduteeosa;

• jalgrattatee on jalgratta, tasakaaluliikuri, pisimopede või mooneediga liiklemiseks ettenähtud sõiduteest ehituslikult eraldatud või eraldi asuvi teeesa või omaette tee, mis on tähistatud asjakohase liikluskärnike.

Vööndisüsteem on jalakäijatele ette nähtud eraldatud alad või tänavad, eelkõige linnade keskustes.

Eritasandiline süsteem tagab suure hoonestustihedusega aladel ning linnakeskustes liikluskärnike ning -ohutuse kerg- ja autoliikluse täieliku eraldamisega. Süsteemi rajamisel tuleb arvestada ka puudega liiklejate ja vaegliiklejate vajadusi.

Vaegliikleja on isik, kelle liikumis- ja orienteerumisvõime on ea, vigastuse, haiguse või muu põhjuse tõttu piiratud. Selline liikleja võib näiteks olla puudega inimene, väikelaps, vanur, samuti lapsevankrit liikkav või rasket pakki kandev inimene.
Kergliikluse põhi- ja jaotusvõrgustiku planeerimise aluseks on jalgrattaliikluse nõuded, mille täitmisel on tee hästi sobitatav ka teiste kasutajarühmade nõuetega.

Ühendused äärelinna asumite ja linnakeskuse vahel peavad olma autoliiklusest eraldatud, sujuvad ja ühtlase kvaliteediga, turvaliste lõikumisteega, piisava nähtavusega, selge teemärgistusega, hea valgustusega, tasase, kõva ja kareda kattega, meeldivas ümbruses, kaitstud pritsimise ja muude kahjustuste eest ning ka talvel korraliku hooldusega.


Jalakäijate ja jalgratturite liiklus tuleb omavahel eraldada, kui kergliiklusteed kasutatakse kirekeks, pikkadeks jalgratta- ja mopeedisöitukeks; kui teel on ka jalakäijad, kelle ohutus nõuab eraldamist (lapsed, vanurid, vaegliiklejad), samuti kui jalakäijate ja jalgratturite liiklussagedus on suur (kokku maal > 1000 inimese ööpäevas\(^9\) ja linnas > 2000 inimese ööpäevas (EVS 843:2003).\(^10\) Soovitatav on need liiklejad võimaluse korral alati teineteisest eraldada tähistatud liiklusradadele.

\(^9\) Soovitavad liiklussagedused liikumise puhul nagu jalakäijate ja jalgratturite Liikumine & liikumisteed kaasava elukeskkonna juhendmaterjal

Kahesuunalise jalgratta- ja jalgteee ristumine sõiduteega.
Levald, A., Saku vald, 2011

Eraldatud jalg- ja jalgrattatee tähistatud ristumine peateega.
Levald, A., Langebro, Kopenhaagen, 2010
Autoliiklusest eraldatud kergliiklustee lahendus peab:

- tagama kergliikluse ohutud ühendused, mis on üheselt mõistetavad, meeldivad, loomulikud ja sujuvad;
- arvesse võtma hooldusnõudeid;
- tagama ka väheste liiklusteadmiste ja -harjumustega liiklejate, nt laste ohutuse;
- arvestama eri kasutajarühmade, sh puudega inimese liikumise iseärasusi;
- tagama, et kergliiklustee kvaliteet vörreldes kõrval asuva sõiduteega oleks ligikaudu sama või parem, mis tagab kergliiklustee kõrge kasutustaseme.

Jalgratturite ning ratastooli kasutajate vajadused liikumistee suhtes on ühest küljest üsna sarnased – mõlemad vajavad võimalikult tasast, ilma astmete, künniste ja järskude ülemäärase kaldeta pindu. Samas erinevad oluliselt nende käitumine liikluses, kiirus ja manööverdusvõime. Teede ühiskasutus nende kasutajagruppide poolt on võimalik vaid tagasihoidliku liiklusoormuse puhul.
Juhul kui kergliiklustee kasutajateks on nii jalakäijad kui ka jalgratturid, tuleb neile määratud teedest mõlemale arusaadavalt eristada. Selleks sobivad erinevatel katendi-materjalid, näiteks värvilt ja taktiilsustel kontrastset kivid, mis ei tohi samas olla ülejäänud pinnast kõrgemad kui 1 cm. Märgistus teekattel peab olema kulumiskindel, kontrastne ning reljeefne.


Taktiilse eraldusriba soovitatakse laius on 30 cm. Selleks kasutatakse ka spetsiaalseid vormikive. Eriti oluline on see ristmikel ning väljasöitudel, kus nägemispuudega liikuja võib märkamatult sattuda kuivõrd selgetalt ja liikluselementide mõjuks. Rattatee võiks olla mõlemale liikluseelementide jaaltest väga vajalik ning liiklejad peaksid seda ka järgima.

Sageli jäavad kavandatavad tänavalahendused ning nende tegelik mõju kasutajatele ehitusprojektides raskesti mõistetavaks. Mõistetavusele aitaks kaasa tänavate kaasav kolmemõõtmeline kavandamine, mis käsitleb insener-projekteerimist ning linna välisruumi kujundamist üheskoos. See võimaldab juba eskiisistaadiumis näidata kavandil selgest ja avalikkusele arusaadavalt rajatise ning liikluseelementide, valgustuse, liikluskoorraldusseadmete ning maastiku-arhitektuuride elemente.

Jalakäijate ala ning rattaraja hästi tajutav eraldamine turvalisel kaldapealset. Tännavamööbel on koondatud välja poole liikumisalasid. Levald, A., Dublin, 2011

Kaasava elukeskkonna juhendmaterjal 150 Liikumine & liikumisteed

Kergliiklustee katenditega taktiilsett hästi eristatav ja liialt alati helistav ja liiklus- ja parkimisvõimalusi avalikus linnaruumis.

Levald, A., Olevi tn, Nõmme, Tallinn, 2010

Liikumine & liikumisteed

Kaasava elukeskkonna juhendmaterjal 151
5.4. Tänavaületusvõimalused


- **Ülekäigurada** – sõidutee osa, mis on ette nähtud jalakäijatele tee ületamiseks ja kus teeületus on reguleeritud fooride abil või on jalakäijal eesõigus.

- **Ületusrada** – sõidutee osa, mis on ette nähtud kergliiklejatele tee ületamiseks ja kus teeületus on reguleeritud fooride abil või on kergliiklejatel eesõigus.

- **Ületuskoht** – sõidutee osa, mis on ette nähtud kergliiklejatele tee ületamiseks ja kus teeületusel kergliiklejatel ei ole eesõigust.

Kõrvuti paiknevad ületusrada ja ülekäigurada Kopenhaageni kesklinnas.

Levald, A., Kopenhaagen, 2010

Silmatorkavalt märgistatud tänavaületuskoht.

Levald, A., Ullapool, Šotimaa, 2006
Kui maakasutus ja olemasolev tänavavõrk võimaldavad, tuleb kergliiklustee suunata üle sõidutee väljaspool eritasandilist ristmikku ja samuti eritasandil. See ei tohi põhjustada kergliiklusele olulist teekonna pikenemist.

Kergliiklejate tee- või tänavaületusrada on kergliiklustee loogiline osa. Ületusraja või ületuskoha puudumine ei tohi tekitada asjatut siirdumist ühelt teepoolt teisele. Ületusrajad peavad olema võimalikult lühikesed, risti sõiduteega ja ristmiku konfliktala lähedal.

Sõidutee ületajale ja ületusrajale läheneva sõiduki juhile tuleb tagada nõutav nähtavus. Arvesse tuleb võtta eri vanuses jalakäijate, ratastoolis liikujate, jalgratturite, sõiduauto- ja bussi-juhtide silmakörgust. 14 meetri või laiema sõidutee ületamiseks tuleb ette näha ohutussaar, mille vähimaks laiuseks on 2,0 m (soovitatav 2,5 m) ja pikkus vähemalt 3,0 m (soovitatav 4,0 m). Neljarajalise tee ületuse rajamine ilma kaitsva liiklus-saareta ei ole soovitatav. Ületuskoht tuleb ehitada määruse lisas toodud lahenduste kohaselt.[1]

Soovitatav on rajada jalakäijate ohutussaari ka kaherajaliste tänavatele. Ohutussaar peab olema sellise kuju ja suurusega, et oleks tagatud jalakäijate voost tuleneva jalakäijate hulga kaitse, sealjuures ei tohi saarel teeületust ootavate jalakäijate tihedus olla suurem kui 2 in/m².

Vältida tuleb liiga suurt arvu ohutussaari, mis muudab tee ületamise tülikaks ja aeganõudvaks. Võttes jalakäija liikumise kiiruseks 1,2 m/s (4,3 km/h), tuleb tagada, et kõigile jääks piisavalt aega sõidutee ületamiseks või ohutussaarele jõudmiseks. Kergliiklustee ja raudtee reguleerimata ülesöidukohal, samuti lõikumisel põhitänavaga tuleb tõkestada jalgratturi otsene kiire väljasöiduvöimalus ületuskohale.
Saared ja kõnniteelt ülekäigule mineku kohad tuleb kavandada nii, et neid saaksid kasutada vaegliiklejad nii ratatoolis kui ka jaalisi. Kõnnitee ja ohutussaare äärekiivi kõrgus ülekäiguraja kohal peab määrase kohaselt jääma vahemikku 2,5 cm kuni 4,0 cm. Tuleb arvestada, et ratatoolis liikujale sobib takistuse kõrgus, millest ta iseisivalt üle saab, ning igasugune seda ületav kõrguste vahe on oluliseks takistuseks.

Kasutajatele on määrase vananenud nõudest sobivam, kui liikumiskeskkonna kavandamisel ja ehitamisel võtta heaks, et äärekiivi kõrgus ei ületaks 2 cm. Veekihi sügavus rentslis ei tohi ületada 2(3) cm, samas peaks saama renstlit läbida kuivaks jäädes.

Kõvakattega väljakute ja linnakeskuses asuvate ülekäiguradade eelse sademevee kogumiseks tuleb kasutada restidega varustatud sademeveerenne. Sademevee äravoolukohti ja -kaevi ei tohi rajada ülekäigukohtadele, sest lausvihmade ning sula korral veega täitunult muutuvad need raskesti läbitavateeks. Edukalt on kasutatud ka võimalikult laugete kalletega kaldplaatelementidega lahendust (nt Tallinnas Kaarli puiesteel).


Levald, A., Brüssel, 2011
Nagu kõnnitee, nii peab ka ohutussaar olema tõstetud sõidutee pinnast kõrgemale. Saart läbiv ülekäigurada võib olla sõidutee tasandil, kui selle kattematerjal erineb sõidutee omast, nii et vaegnägijad ja pimedad tajuvad liiklusolukorra muutumist.

Ristmikud ei pea alati teenindama kõiki liikluses osalejaid. Osa ristuvatest suundadest võib olla määratud ainult jalakäijatele või ratturitele. Ristmike kujundus peab järgima eelkõige jalakäijate vajadusi otseühenduste ja sirgete liikumissuundade järel, mis omakorda tähendab väikesse raadiusega nurkade kasutamist. See vähendab sõidutee domineerimist liinaruumis ja selle kasutuses.

Suured ringristmikud ei sobi jalakäijatele, kuna nad sunnivad soovitud liikumissuunast kõrvale kalduma. Oodates ühe ristuva tänava ületamist, ei suuda inimesed alati prognoosida sõidukite liikumist ringristmikul ning neid ennetada. Suured ringristmikud võivad olla ohtlikud ka jalgratturitele ristuvatelt tänavatel väljumisel, kuna autojuhid ei märka neid öigeaegsalt.

Väikesed ringristmikud on elamupiirkondadesse sobivamad, kuna ei sunni jalakäijaid olulisel määral ringi liikuma, sobivad paremini ratturitele ning vajavad vähem pinda.

LIIKLUSE RAHUSTAMINE

Elamualade siseteedel, õuealadel ja teistel rahustatud liiklusega aladel kasutavad erinevad liiklejad sama teepinda. Parkimine on tavaliselt ühes tasapinnas.

Kasutajagruppide-vahelisi konfikte saab minimeerida, kui vähendada mootorsöidukite kiirust. Liikluse rahustamisel tuleb mõnes piirkonnas ehituslike meetmete abil saavutada olukord, kus üle 30 km/h sõidukiiruse kasutamine on erandlik. Et saavutada sellist kiirust, peaksid liikluse rahustavad vahendid paiknema mitte harvemalt kui 70-metriste vahepealdega. Kõrvaltännavate ja eriti õueala liikluskorralduse kavandamine ja rakendamine on avalik kaasav protsess, mille käigus saab kohalik kogukond väljendada kõiki oma soove. On oluline, et lahenduse kujundamisel osaleb võimalikult suur hulk elanikke.[12]

Liikluse rahustamiseks on palju erinevaid võtteid[13], sh on kiiruse vähendamisel väga mõjudus horisontaalne või vertikaalne körvakeleli liikumisjoonest, liiklemise eelisõiguste vaheldumine, tänava mõõtmete varieerimine ning otsesuunas nähtavuse piiramise. Ideaalis peaks seda tegema kiirust limiteerivate tänavate tervikliku kavandamise, mitte ainuüksi sõidukiirust piiramate märkide paigutamisega. Samuti rahustab liiklust tänavaal parkimine.

Oluline on, et liiklejad üksteist vastastikku igati arvestaksid. Sel juhul puudub otsene vahetus kõnni-, jalgratta- ja sõiduteede füüsilise eraldamise järel ning on võimalik liiklusala jagamine.

Traditsioonilistes tänavarialajõustes on jalgpäev ning sõidude tänapäevased ja võimalikud arvavad sama liiklemisala. Liiklemisala saab jagada suhteliselt vähe vahetusa muutunud rahustatud liiklusega keskkonnas, seega kõrvaltännavatel, kus on võimalik anda jalakäijale liikumiseelis.

Traditsioonilistes tänavarialajõustes on jalgpäev ning sõidude tänapäevased ja võimalikud arvavad sama liiklemisala. Liiklemisala saab jagada suhteliselt vähe vahetusa muutunud rahustatud liiklusega keskkonnas, seega kõrvaltännavatel, kus on võimalik anda jalakäijale liikumiseelis.

Kõrge hoonestuse vaheline jagatud liiklemisalaga linnaruum kõigile. Levald, A., Kamppi, Helsinki, 2006
Jagatud liiklemisala loomise põhilised eesmärgid on:

- sundida sõidukeid sõidukiirust vähendama;
- luua keskkond, kus jalakäijad saavad sõidukite poolt heidutamatult liikuda, jalutada, peatuda ning suhelda;
- soodustada jalgsiliikumist ning teha see lihtsamaks;
- soodustada sotsiaalset suhtlemist.

Lahendatud peab olema parkimine ning arvesse võetud vaegliikujate huvid. Rahustatud liiklusega alasse, jagatud liiklemisalasse või õuealasse sisenemine ja sealt väljumine peavad olema üheselt ja hõlpsasti tajutavad, kasutades selleks lisaks liiklussignalsele erinevaid teekattematerjale, haljastust ja teekitsendusi.

Kõnnitee puudumise taotluslikuks eesmärgiks on, et mootor-sõidukite juhid sõidavad ettevaatluslikult, olles sunnitud samas liiklusruumis suhtlema teiste liikluses osalejatega.
Liiklemisala jagamisel tuleb arvestada, et:

- eristamata tänavapinnad põhjustavad parkimiskorra halvenemist;
- nõrgemad tänavakasutajad tunnevad end ohustatuna, kuna puudub söidukitest eraldatud ruumiosa;
- tänavahaljastuse, välismõõbli ning teiste tänavaruumi elementide funktsionaalselt põhjendatud ning visuaalselt korrastatud paigutamine on keeruline.

Vaegliikujatel ning nägemispuudega inimestel võib jagatud liiklusaladel olla probleeme orienteerumisega, mistõttu tuleb tänavaruumi kujundamisel nende vajadusi arvestada.[14]

**NÄHTAVUS JA VALGUSTUS**


Silma kõrguseks võetakse vahemik 1,05 m (söiduautod) kuni 2 m (raskeveokid). Juhid peavad nágema takistusi, mis on üle 0,6 m kõrged. Objektidel, mis ei varja tervikuna jalakäijat või autot (sh last ning ratastoolis liikujat), ei ole tänavaliikluse ohutusele olulist mõju.

**Valgustus**

Tänavavalgustus peab tagama nähtavuse kaudu liiklusohutuse kõigile osapooltele, seda eriti valgustingimuste muutudes. Tänavavalgustus tõstab jalakäijate ja jalgratturite turvalisust könni- ja kergliiklusteede normikohase valgustusega ning reguleerimata ülekäiguradadel spetsiaalse ülekäigu- radade valgustuslahendusega.


Valgustus peab pärast pimeduse saabumist parandama mitte ainult nähtavust, vaid ka koha väljanägemist. Samal ajal ei tohi tänavavalgustus põhjustada valgusreostust, hâirda
ümbruskonna majade elanikke ega pimestada tänaval liiklejaid. Valgustus ei pea olema kogu pimeda aja jooksul ühesugune, vaid sõltuma ajast ja välisruumi kasutusest. Valgustus ei ole universaalseks lahenduseks, kuid kus seda kasutatakse, peab see olema kvaliteetne, moodustama tänavakavandi sisulisuse osa ning olema konkreetse asukohaga seotud.

Valgustuskorraldusega võib anda anda tänava rumile suure lisa-väärtuse, tähistades ja piiritledes tänavamaastikus erinevaid kasutusfunktsoone ning lisades visuaalset kvaliteeti. Väga oluline on valgustuse värvi toon. Üldiselt eelistavad jalakäijad võimalikult valge tooniga valgust. Vöimaldades paremat värbitaju, tänava erisuste ning sellega seotud informatsiooni vastuvõtmist on see ka kasutajale turvalisem. Näiteks võib valgema valgustooniga esile tuua inimeste poolt aktiivselt kasutatava linnatänavatsooni, eristades seda söiduteedest, mida valgustatakse tavaliselt kõrgsurvenaatriumlampidega (meekollane toon) või madalsurvenaatriumlampidega (oranžikas toon).

Inimene eristab kunstliku valgustust ja loodusliku valgustust värvi tooniga ja värvustemperatuuri järgi. Tehisvalgus võib värviesitust muuta, mistõttu pole võimalik eri värvitervat eristada. Mitte ükski elektrilamp ei saa püsivalt täpselt jäljendada.
päevavalguse valgusvärvust. Seetõttu sobivad kõrgsurvenaatriumlambid küll teevalgustuseks ja haljasalade kõnniteede valgustamiseks, kuid parkide valgustamiseks on kõrgsurvenaatriumlamp sobimatu oma madala värvieristuse poolest, seda eriti rohelise värvuse osas. Samuti võib valgusvärvus lambil, mille värvustemperatuur on lähedane selge keskpäevase taeva valgusele, tunduda õhtu lähenedes liiga sinine.

Tännavaruumi kasutuse probleemid võivad olla tingitud mitte ainult halvast või ebasobivast valgustusest, vaid ka valgusräägusest. Räägus* on nägemisolukord, mis tundub ebamugav või mille tagajärjel esemete nähtavus halveneb. See on otseksel seotud ka valgusreostuse mõistega. Ruum ei näi pime mitte ainult siis, kui sellesse siseneva valguse üldine hulk on liiga väike, vaid ka siis, kui valguse ühtlus on vilets. Vältida tuleb valgustugevuse järske muutusi.

Valgustimastid on tännavaruumi olulised elemendid, samuti määravad ruumi iseloomu ja mõõtkava valgustite paigutus, kõrgus ja kuju. Valgustite kõrgus sõltub valgustuspunkti kõrgusest ning valgusti valgustustehnilistest omadustest.

*Tännavaruumi ühtlane valgustus, kusjuures valgus tuleb ka vaateakendest.

Levald, A., Boulevard de Waterloo, Brüssel, 2003

Lai erineva tugevuse ja iseloomuga valgustatud liikumisaladega kõnnitee magistraaltänava ääres. Valgus on siiski kohati räige.

Levald, A., Rue de la Regence, Brüssel, 2003
Valgustatust mõjutab samuti tänavakatendi pealiskiht (valgust peegeldav või neelav materjal), ümbrus (haljastus või heledad peegelduvad seinapinnad) jms.

Kuna tänavavalgustuse põhiliseks eesmärgiks on kujundada sobiv sõidukiliikluse keskkond, on valgustid sageli tänavaristlõikes liialt kõrgel ning ei vasta jalakäijate vajadustele. Valgustusposti kõrguse vähendamine või tänavavalgustuspostile jalakäiguala valgustuseks madalama valgust mõjutab valgusallikale inimliku mõõtme. Samas tuleb kõrgust vähendades valgustuspostide arvu suurendada. Valgustuspostid tuleb paigutada selliselt, et nad ei piiraks jalgrattide vaba laiust, ei takistaks ratasõidjaid ja käru ega ohustaks nägemispõhinede inimesi. Vajaduse korral tuleb postid tähistada kontrastsete värvisvööodega.

### ÄÄREKIVID JA ERALDUSRIBAD

Tänava sõiduteekatendi eristamiseks könniteest, jalgteest või haljasribast paigaldatakse äärekivi.

#### Äärekivi ülesandeeks on:

- jalakäijate ja jalgratturite kaitse autoliikluse eest;
- liiklussaare ääristamine;
- sademee suunamine restkaevu;
- haljastuse, valgustumastide, portaalide, postide, liiklusbalkide jms kaitsmine;
- tänava välisilm parandamine;
- liikluse optiline juhtimine;
- nägemispõhinede inimaste abistamine orienteerumisel;
- sõidukite haljasribale või könniteele parkimise takistamine;
- tänava mehhaniseeritud koristamise kergendamine.
Allalastud äärekivi.

Kaitseriba (autoliiklust ja jalgliiklust eraldav riba) vähim laius söidutee servast kuni kõnnitee siseservani peab olema 0,5 m. Praktikas alla meetri laiused eraldusribad ei toimi ja kõrghaljastuse kasutamisel eraldusribas peaksid need olema märksa laiemad. Kõnnitee peab olema söiduteest eraldatud vähemalt 6 cm kõrguste äärekividega.

Madalama kõrgusega äärekivi kasutatakse kõnnitee liitumisel jalakäijate ülekäigurajaga ja söidutee eraldamisel parkimisrajast: 2,5–4 cm; jalgrattatee liitumisel jalgratturite ülesöidurajaga: 0 cm; eraldusriba ääresel, kõnnitee ja krundi või jalgrattatee vahel ning eraldusriba ja kõnnitee või jalgrattatee

Levald, A., Rakvere keskväljak, 2004

Madala äärekiviga tänavaületus.

Levald, A., Avenue Louise, Brüssel, 2011

Äärekiviramba tänavaületus ja äärekivita pääs trammi ootealale.

Levald, A., Avenue Louise, Brüssel, 2011
vahel: 0–2 cm. Ratastooliga liikujatele on probleemiks ka madal äärekivi. Jalakäijate ületuskohad väärtustab ka ebamäärase geomeetrilise kujuga. Sõiduteele laskumiseks ja sealt könnteleele või ohutussaarele tõumistest hõlbustamiseks ei tohi kasutada längu lõigatud äärekeive ega paigutada sõiduteele kaldpakke.

Sõidutee ning könnteee ühendus liitumisel jalakäijate ülekääguraja tuleb lahendada äärekevirambi või madalama kõrgusega äärekeiviga, mis on sõiduteest 2,5–4 cm kõrgem.[10][1] Siin on nii standardis kui määruses vastuolu ratastoolis liikujate kui jalgratturitega võrreldes vähem võimekate kahjuks. Samas soosib see pigem tee-ehitajat. Lähtuda tuleks põhimmoti, et mida madalam on üleminek, seda soodsam liikujale, kuid üleminek peab olema tajutav. Heaks tavaks on lähtuda sellest, et kõrguste vahe ei ületaks 2 cm. Samad tingimused tuleb luua ka parklatesse ning teistele aladele, kus üks tee kohtub teiseega ning üleminek on vaja teha hästi läbitavaks.

Äärekeviramp peab olema vähemalt 1,2 m lai ja koosnema maandumispinnast, juurdepääsupinnast, külgkaldest, põhikaldest ehk rambist ning sõiduteed äristavast rentslist. Maandumispind äärekevirambide juures on väga oluline, sest see lubab rambist mööda liikuda neil, kes liiguvad piki teed ega ole huvitatud tee ületamisest.
JALGTEEDE LAIUSED JA KATENDID

Kergliiklustee ristlõige tuleb määrata lähtudes jalakäijate ja jalgratturite ruumivajadusest ning liiklussagedusest. Lisaks sellele on vaja võtta arvesse ka ratastoolil liiklejate ruumivajadus. Liikumispuudega inimeste kasutatava kergliiklustee piki- ja põikiprofili puhul peab valima parima projekteerimise lähtetaseme.

Jalakäijatele määratud kohad peavad täitma väga erinevaid ülesandeid, sh liikumine gruppides, laste mänguvõimalused ning paljud teised välisruumis võimalikud tegevused. Jalg- ja kõnnitee laius peab olema vähemalt 1,8 m (soovitatav 2,0 m), mis võimaldab ka ratastoolis liikuvaid mõõduda teineteisest või lapsevankriga liikujast. 2,0 m laiune jalgtee võimaldab paralleelselt liikuda kahe ratastooliga. Kõnniteede laius võib erinevatel tänavatel erineda, sõltudes jalakäijate hulgast ning nende koosseisust. Kõnnitee miniimaalseks vahemikuks on 1,5 m. Peab mees pidama, et kõnniteedele ei ole seatud maksimumlaiuse piirangut.

Elurajoonisised jalgteed peavad olema vähemalt 1,8 m, öueteed ja üldkasutatava cape hoonetesse viivad teed vähemalt 1,2 m laiused. Ratastooli tagasipöördeks peab kahe meetri ulatuses olema laiust vähemalt 2,5 m; täisnurkseks pöördeks on vaja vähemalt 1,5 m laiust ja 1,5 m pikkust teelõiku. Jalg- ja kõnnitee pikikalle ei tohi ületada 6% ja külkgalle 2%.

Körnite töstmise tõttu on sissepääs maja jaanud süvendisse. Süvend ja piirded takistavad kõnniteel liikumist ning on ohtlikud.

Levald, A., Väike-Ameerika tänav, Tallinn, 2011

Kaasava elukeskkonna juhendmaterjal 164 Liikumine & liikumisteed
Väga kitsastes oludes või reljeefsel maastikul on erandina lubatud pikikalle 8–10% vastavalt 12–10 m pikkusel teelõigul.

Kergliiklustee sild ja silla piirete vahe peab olema 0,5 m võrra laiem kui sillale suubuva kergliiklustee laius. Kergliiklustee tunnelli laius peab vastavalt olema 1,0 m võrra laiem suubuva kõnnitee laiusest. Jalgteetunneli suurim lubatud pikikalle on 4% ja põikkalle 2%.10[1]

Kui kõnniteed ei ole võimalik ehitada sõidutee pinnast kõrgemale, tuleb kõnnitee kõigile kasutajagruppidele tajutavalt markeerida. Jalg- ja kõnniteed peavad olema tasase pinnaga ja kõva kareda kattega, mis märgudes libedaks ei muutu. Pinnakattes (sh kiviparkett, kõnniteeplaadid, unikivi jms) ei tohi olla üle 0,5 cm suuruseid pragusid ega lõhesid, samuti ei tohi üleminekud (sh kaevukaante maksimumkõrgus maapinnast) olla üle 0,5 cm.15

Linnatingimustes sobivad katendimaterjalid tänavatega seotud kergliiklusteedel on:

• asfalt;
• betoon;
• loodus- või tehiskivist kiviparkett.
Küündimatu ja kasutajatele halb könniteelahendus.
Levald, A., PERH Mustamäe korpus, Tallinn, 2011

Kasutajasõbralik nurgalahendus äärekivirambiga.
Levald, A., Nunne tänav, Tallinn, 2011

Haljastus on vallutanud kitsa könnitee.
Levald, T., Loutraki, Kreeka, 2009
Sobivad katendimaterjalid tänavatest eraldi paiknevate kergliiklusteedel on:

- peen tihendatud marmorkillustik;
- peen tihendatud graniitkillustik;
- savivaba tihendatud peenkruus;
- peen tihendatud paekillustik.

Kuivendamata kandepinnasel ja/või halvasti ehitatud alusel kergliiklusteed ja/või ebapiisavalt tihendatud kruusale ja killustikukatendid on takistuseks ratastel liikuvatele abivahenditele. Eelistada tuleb lahendusi, mis on kõigile kasutatavad, näiteks on võimalik eri katendite kombineerimine (killustik-mustkate) jne (vt ka Liikumisrajad).

Munakivisillutis ei ole liikujasõbralik.
Levald, A., Loviisa, 2009

Hästi läbitav kiviparkett.
Levald, T., rannapromenaad Funcal, Madeira 2010

Öigest materjalist pind on lapsevankri ja ratastooliga hästi läbitav ka hooldamatult.
Levald, A., Narva-Jõesuu, 2010

Parkettkivid on dekoratiivsed ja sobivad vanalinna hästi. Neist saab moodustada hästi läbitavad ja taktiilset tajutavad liikumistsoone.
Levald, A., Tallinna vanalinn, 2011
Mosaiikne pinnakate on samas liikumist suunav.
Levald, A., Ateena, 2009

Tihendatud peenkrusast kõnnitekatend. Tiigi kaldaala ja erinevate liiklusteede piiritlemine jätab turvalise ruumi kõigile ning võimaldab vastastikuseid kontakte.
Levald, A., Avenue de Hippodrome, Brüssel, 2006

Kiviparkett õuealal. Sademevete kogumisrennid on liikumiskeskkonnast hästi tajutaval eraldatud.
Levald, A., Malmö, 2010
**Taktiilsed katendid**

Erinevate katendite üleminemised peavad olema samas tasa- pinnas. Tee suuna- ja/või iseloomu muutus märgistatakse taktiilse katendiga. (Vt ka peatükk 4, **kommunikatsioon**.)

Taktiilsed katendid välisruumis jagunevad põhimõtteliselt suunavateks ja hoiatavateks:

**Suunavaid katendeid** kasutatakse jalgteedel, väljakutel, avalikes ehitistes ja ühistranspordipeatustes viibijate ruumiorientatsiooni parandamiseks.

Üldlevinud on suunavad, reljeefseis rügilise pealispinnaga nn triibuplaadid tüüpmõõtmetega 30 × 30 cm.

**Hoiatavaid katendeid** kasutatakse tähistamaks jalgteede lõppu, tee jagamist ja ääri, tänavaületuskohale jõudmist, mitmesuguseid takistusi, rampide ja treppide algust ja lõppu, ohtlike ääri (nt ooteplatvorm), sissepääse bussi ja rongi, samuti sisse- ja väljapääse ning kohti, kus toimub oluline reljeefi muutus.

Levinud on hoiatavate, tüüpmõõtmetega 30 × 30 cm reljeefseis punktidega kaetud nn mullplaatide (hoiatav-suunav ja kohta näitav stopp-plaat) kasutamine.
Raudtee ooteplatvormist eraldatud nii erksavärviliste visuaalsete kui mahuliste taktiilsete märkidega.
Vaikla, T.-K., metrojaam Brüsselis, 2011

Ooteplatvormi serv on tähistatud kontrastse värvi ja suvepoolaastal tajutavalt erineva pinnakattega, kuid värv on kuluv ning katendi erinevus pole talvel tuntav.
Levald, A., Laitse, 2011

Taktiilselt tähistatud kaldpind.
Levald, A.
Erineva faktuuriga pinnad annavad vaegnägijatele signaali trepi algusest.
Vaikla, T.-K., metroojaam Brüsselis, 2011

Bassein piirneb taktiilselt tajutava katendiga.
Levald, A., Šoti parlament, Edinburg, 2006

Taktiilselt tähistatud sissepääs galeriisse.
Levald, A., Chaussee de Charleroi, Brüssel, 2011
TREPID JA PANDUSED

Trepp planeeritakse välisruumis kohta, kus see märkimisväärselt lühendab jalakäijate teekonda. Sellisteks paikadeks on näiteks ühistranspordipeatuse ja raudteejaama läheduses olevad eritasandilised ristmikud, sissepääsud, ooteplatvormid jms.

Kaasavas linnakeskkonnas tuleb kõrguste vahe ületamiseks kavandada pandus* või trepp koos pandusega. Igalt suunal peab olema vähemalt üks pääs kergliiklustee tunnelisse või kergliiklustee sillale kavandatud pandusele. Kui pandust ei ole võimalik ehitada, tuleb paigaldada lift ning tagada selle kasutatavus.

Pandus või trepp peab paiknemata hõlpsasti leitavas ja ligipääsetavas kohas, kas kõnnitee kõrval või sellega risti, kuid üldjuhul mitte kõnnitee jätkuna. Erandina võib kavandada tunnelisse pääsu ka kõnnitee arvel, kui pääsu kõrval jääva kõnnitee laius (mitte alla 1,5 meetri) peab vastama seda kasutavate kergliiklejate voo sagedusele.

Kergliiklustee silla (tunneli) trepp ei tohi olla kitsam kui rajatise käiguosa laius. Panduse suurim pikikalle on 6%. Pandus koos trepiga peab olema vähemalt 2,0 m lai, sealhulgas trepp

* MKM määrus 28.11.2002 nr 14 – Panduse näide on toodud määruse lisas.
vähemalt 1,0 m ja ühesuunaline pandus vähemalt 1,0 m. Pandusel pöörete tegemisel (90° või 180°) tuleb panduste vahele paigutada made pikkusega vähemalt 2,0 m kuni 2,5 m. Trepp tuleb pandusest eraldada käsipuuga. Kohtades, kuhu tehakse üksnes liikuvad trepid, peaks olema kõrval nii lift kui ka tavaliine trepp käsipuuga.

Liikumis- ja nägemispuudega liiklejate seisukohalt on õige rajada sirgete marssidega (trepiikuludega) trepp. Keskmist kasvu liiklejatele sobib hästi trepp, mille $E + 2N = 630$ mm, kus $E$ – astme laius, mm ja $N$ – astme kõrgus, mm.

Kohtades, kus kaldtee rajamine ei ole mõistlik, tuleb kõrguste vahe ületamiseks ehitada lift.
Levald, A., Trepp Brühl terrassile, Dresden, 2008

Ka üksik aste on oluliselt takistuseks.
Levald, A., Tallinn, 2011

Trepi, panduse, erinevate pinnakate ning tajutivate kantidega korruselamu sissepääsüürikond.
Levald, A., Rostock, 2003
Ohtlik ja järsk kaldtee, mida eraldab maapinnast kaks astet.
Levald, A., Värka Sanatootum, 2011

Panduse ja trepiga pääs jalakäigutunnelisse. Ei trepp ega pandus pole hästi kasutatavad. Pandusel, puuduvad käsipuud ning mademed, trepi käsipuu on lühike ja lagunenud.
Levald, A., Louise, Brüssel, 2011

Turismiinfopunkt ja kohvik on astmete tõttu lastekäru ja ratastooliga ligipääsmatu.
Levald, A., Ülenurme, 2011
Jalakäijate sild üle River Nessi.  
Levald, A., Inverness, Šotimaa, 2006

Trepp takistab ratastooliga majja pääsemist ning võib olla ka könniteel liikujale ootamatuks takistuseks.  
Levald, A., Tallinn, 2011

Erandlikult on kaarsilla rajamisel arvestatud ka silla kalde ning lõbedusega. Pääs sillale on aga pinnakatte tõttu raskendatud.  
Levald, A., Ingliste park, 2009

Barjäärivaba välisuks.  
Hästi kasutatava trepi ja panduse kavandamisel tuleb arvestada järgmisi ühiseid nõudeid:

- Ühel sihil ei tohi asetseda ühe kahe trepimarsi, seejärel tuleb ette näha suuna muutus vähemalt 10° pöördenurga võrra. Sama nõuet tuleb rakendada ka pikkade panduste kavandamisel.

- Trepi ja panduse mõlemas servas peab olema kaks käsipuu, üks täiskasvanute (900 mm), teine laste (600–700 mm) jaoks. Käsipuu vähim vaba kaugus seinast või kinnisest piirdest peab olema 45 mm. Trepivõre/barjääri pulkade maksimaalne vahekaugus on 110 mm.*

- Käsipuu peab ulatuma mõlemas suunas üle panduse kaldosa ja üle trepi esimese ning viimase astme tõusu vähemalt 400–500 mm ulatuses. Käsipuu otsad peavad olema painutatud allapoole ja kinnitatud kas põranda/katendi külge või ühendatud madalamal asuva käsipuuga.

- Käsipuu peab olema ümara või ristkülikukujulise ristlõikega, ümarprofili läbimõõt 30 mm kuni 50 mm ja ristkülikukujulise profili paksus 25 mm kuni 30 mm ning soovitatav ümbermõõt 120 mm kuni 180 mm.

- Käsipuu peab olema täiskasvanutele on 30–45 mm ja lastele 25–35 mm.

- Välistingimustes tuleb allaviiva trepi ja panduse algus märkida 500 mm laiuse kontrastmaterjalist ribaga, astmete servades tuleb kasutada kontrastvärvī.

- Treppi ja pandust tuleb hästi valgustada (klass K3).

- Välistingimustes võib osutuda vajalikuks varustada trepp või pandus elektrilise soojendusseadmega.

---

*MKM määrus 28.11.2002 nr 14 – Käsipuu näide on toodud määruse lisas.

---

Kaldtee algus ja lõpp on tähistamata, käsipuu on trepist kaugel ja halvasti kasutatav.
Levald, A., Hotell Viru, Tallinn, 2011
Hästi kasutatava trepi kavandamisel tuleb arvestada järgmisi nõudeid:

- ühel tõusul või trepimarsil ei tohi olla vähem kui kolm trepiastet;

- kolme ja enama trepiastmega tõusul peab trepiastmete pind värvi- toonilt erineva tasapinnast või trepi esimene ja viimane aste olema markeeritud 50–80 mm laiust optiliselt kontrastsete võötidega astme kogupikkuses;*

- trepiaste peab olema kinnine, ninata, tasane, kareda pealispinnaga ja soovitatavalt vähemalt trepi avatud küljelt vähemalt 2 cm kõrguste põskedega vältimaks jala, kepi või kargu libisemist külgsuunas. Eelistada tuleb täisnurkse profililist laadsast astmeid;

- kaetud välistrepil on astme vähim laius 300 mm ja suurim kõrgus 160 mm, katmata välistrepil vastavalt 400 mm ja 130 mm;

- ühes trepimarsis peavad kõik astmed olema ühesugused;

- astmete suurim arv ühes trepimarsis on 12 (erandina 18);

- kahesuunalise trepi vähim laius on 2,0 m;

- kahte trepimarssi peab ühendama vähemalt 1,5 meetri laiune trepimade.

*MKM määrus 28.11.2002 nr 14 – Trepi näide on toodud määruse lisas.

Hea teostusega trepp.
Levald, A., Eesti Kontsert, Tallinn, 2011
Kaldtee on sobiva kaldega, kuid nii trepil kui kaldteel puuduvad käsipuud.
Levald, A., Tartu, 2011

Nõuetekohaselt paigutatud kaldtee. Kaldteel on kahel kõrgusel käsipuud ja kare metallrestiga käigutee. Trepp on varustatud nõuetekohase käsipuuga.
Falkenberg, V., Tallinn, 2009

Nõuetekohane raudtee ooteplatvormi pandus, mis aga algab ratastooliga halvasti läbitavalt pinnaselt.
Levald, A., Laitse, 2011

Kaasava elukeskkonna juhendmaterjal 178 Liikumine & liikumisteed
Kaldtee on liiga järsk ja kasutajatele ohtlik.

Levald, T., pääs Tamula järvepromenaadile, Võru, 2010

Liiga järsk ja ilma käsipuudeta pandus.

Levald, A., Musumägi, Valli tn, Tallinn, 2011

Treppidega paralleelsed ajutised kaldteed Veneetsia kunstibiennaali külastajatele. Kaldtee on liialt pikk ning vajab puhkemademeid.

Vaikla, T.-K., Veneetsia, 2011
Hästi kasutatava panduse kavandamisel tuleb arvestada järgmisi nõudeid:

- suurim pikikalde on 6%, rahuldav 8% ja erandlikul tasemel 10%;

- ratastooli kasutajatele on suurim sobiv kalle 6%, järsema kaldega pandus on üldjuhul keelatud;

- rekonstrueeritavate ja restaureeritavate hoonete puhul võib pandus ääres kalle 6%, järsema kaldega pandus on keelatud;

- ühesuunalise liiklusega panduse võib rakendada pikikalde kuni 10%, järsema kaldega pandus on keelatud;

- kergliiklustee lühikested lõikudel (alla 20 m) võib rakendada pikikalde kuni 10%, järsema kaldega pandus on keelatud;

- kuni 5% (1:20) pikikalde puhul ei ole vahetasandeid (puhkemademeid) vaja;

- ühesuunalise liiklusega panduse vähim laius on 1,0 m, kahesuunalisel 1,8 m, 8% ja erandlikul tasemel 3,0 m;

- 6% pikikaldega sirgpandusel on vajarik vähemalt 1,5 m (soovitatav 2,0 m) pikkune puhkemade, keerdpandusel peab puhkemademe pikkus olema vähemalt 2,0 m (soovitatav 2,5 m). Keerdpanduse mademe pikkus määratakse siseküljelt. Puhkemademed tuleb ette näha sellise sammuga, et koldosa kõrgeuse muutus ei ületaks 480 mm ja selle horisontaalprojektsioon 6,0 m;

- kui panduse pealispinna kõrgeus erineb ümbruse tasandist, on käsipuud vajalikud molemal pool;

- käsipuud peavad panduse molemal poolel jätkuma katkematuks ka puhkemademetel;

- pandus peab olema piiratud vähemalt 70 mm kõrguse aärisesega, ümbrusega ühel tasandil oleva panduse ääre kõrgus peab olema vähemalt 50 mm;

- trepi või järusakuga külgnev pandus tuleb neist eraldada kuni alumise käsipuuni ulatuva varb- või vörkipiirdega;

- panduse kohal peab vaba kõrgus olema 2,5 m;

- pandus peab värvitoonilt erinema tasapinnalises teleostas, olema kõva ja kareda pealispinnaga, mis märgudes ei muutu libedaks.
5.5. Parkimine

Liiklusvahendi liikumine algab ja lõpeb seismisega parkimisplatsil. Parkimine ühendab liiklemise ja maakasutuse. Keskmise läbisõiduga sõiduauto seisab umbes 95% ajast parkimiskohal ning vajab selleks umbes 1,7 parkimiskohta päeval. Seega sisaldab liiklus valdavalt parkimist ehk seisvat liiklust. Eriti suur parkimiskohtade ja -pinnas vajadus on sotsiaalselt enam kasutatavates kohtades, kus on ka suurim vajadus kõiki kasutajaid kaasava elukeskkonna loomise järel.


Tänava, väljaku, kvartali ja üldkasutatava hoone ehitusprojektis tuleb määrata parkimis- ja liikluskorraldus, sh puudega inimeste ja neid teenindavate erisõidukite parkimine, parkla juurdepääsud ja ühenduste, parklaga seotud tehnovörgud ja liikluskorraldusvahendid ning parkla haljastus. Ette tuleb näha parkimiskohad elanike, kaubaveo-, teenindus-, külastajate ja tööläinajate sõidukitele ning jalgratastele. Peamine eesmärk on tagada tänavate kujunduslik ja kasutuslik kvaliteet kõigile selle kasutajatele.[5]

Parkimiskohtade paigutamisel tuleb arvestada parkla ja sihtpunktide vaheliste ühenduste jaoks sobivust elanike ning külalastajatele, samuti parkimiskohtade soodsat kasutatavust igal aastaajal. Tänavatel korraldatavad parkimiskohad ei ole autoomanikele kinnistatud, samas peab ka seal olema osa parkimiskohti ette nähtud vaegliikujate autode.


Parkimise kõnniteel ei jäta kõndijatele liikumisvõimalusi.
Levald, A., Laki tn, Tallinn, 2009

Kus on parkimine, kus jalgtee ning kus eraldusriba?
Levald, A., Forelli tn, Tallinn, 2009
liigendada vigastuste eest kaitstud tänavapuude, haljastuse või muude vahenditega. Parklaga ühendav jalgtee tuleb kavandada ohutusnõudeid arvestavalt ning see peab olema kasutatav puudega liikujatele. Parkla naabruses peavad olema paigutusvõimalused parklast koristatud lumele, mis ei segaks jalgteel liikujat. Parkla on soovitatav jagada haljastusega kuni 20 autokohaga osadeks. Parkimisalad tuleb eraldada muust keskkonnast 3 kuni 5 m laiuse põõsaste- või puudereaga. Ka garaažid, pinnasvallid, aiad ja tugimüürid sobivad parkimisalade välispirille.

**PARKLAD PUUDEGA INIMESTELE**

Parklates peab iga 50 parkimiskoha kohta olema 1 koht puudega inimestete sõidukile, kuid kokku mitte vähem kui kaks kohta, mis tuleb reserveerida võimalikult hoone peasissepääsu (ka lifti sissekäigu või kassa) või sihtpunkti lähedale. Väiksemates parklates peab olema vähemalt 1 koht.* On ka soovitusti reserveerida liikumispuuudega autokasutajatele vähemalt 5% parkimiskohtadest, vanema elanikkonnaga piirkondades veel rohkem.[5] Sellised parkimiskohad peavad

---

*MKM määrus 28.11.2002 nr 14. Avalikes autoparklates tuleb ette näha 1% parkimiskohtadest invaautodele, kuid mitte vähem kui 2 kohta, kusjuures väiksemates parklates vähemalt 1 koht. Invaautode parkimiskohtade näited on toodud määruse lisas.
olema varustatud vastavate tunnusviitadega ning parkimisko- 
hale värv või muu püsiva materjaliga rajatud piktogrammiga.

Puudega inimaste autode parkimiskohale laius peab olema 
vähemalt 3,5 m ja pikkus 6 m. Tavaparkimiskohast suuremad 
mõõtmed on tingitud vajadusest siirduda abivahendist (rata-
tool, käämisraam jms) auto istmele ning abivahend kokku 
panna. Lisaks võib seejuures vaja minna lisaruumi abistajale. 
Kui puudega inimaste sõiduki parkimiskoht asub kõnniteega 
paralleelselt, võib parkimiskohale laius olla 2,5 m juhul, kui 
auto servas on vähemalt 1,0 m vaba ruumi või sama laiusega 
jalgtee. Selleks et ratastooli kasutaja saaks võtta pakiruumist 
pagasit või kasutada invatakso töösteseadet, peab auto taga 
olema vähemalt 1,5 m vaba ruumi.

Puudega inimaste sõidukitele kavandatud parkimiskohakas 
kõnnitee vahelise äärekivi kõrgus ei tohiks olla üle 2 cm. Mää-
rusega noutud kõrgus on liialt suur ja ratastool ei pruugi seda 
ületada. Soovitada tuleb nii vääkset kõrguste vahet kui või-
malik, kusjuures katendite üleminek peab olema tajutav. (Vt 
ka eespool Äärekivid ja eraldusribad.) Ka vaeglukujate autode 
parkimiskohtade kavandamiseks on palju erinevaid juhend-
materjale.[17] Oluline on soodus sissepääs liiklusvahendisse 
ja sealt väljapääs ning abivahenditega liikumise võimalused 
parkivate liiklusvahendite vahel. Vaeglukujate parkimiskohta-
des ei tohiks kasutada murukivi, mis ei võimalda liikumisabi-
vahevitadel liikuda.
Avaliku hoone parklas või parkimishoones tuleb puudega inimeste sõidukitele jäetud parkimiskohad tähistada vastava märkistusega, mis tähendab nii pinnakatte märkistamist kui ka lisatahvli paigaldamist.

Kinniste parklate (garaažide) uksed peavad olema kas vastukaalude abil kergesti käsitsetavad või automaatselt käivitatavad. Parklate puhul, mis on varustatud automaattökkepuudega ja kuhu puuvad alternatiivsed sissepääsud, tuleks tõkkepuu kõrvalt tagada vähemalt 1,0 m laiune läbisöiduvõimalus liikumisabivahendiga läbipääsemiseks.

Eestis võib nõuete kohaselt rajatud invaparkimiskohti näha kõige enam suurte kaubanduskeskuste sissepääsude läheidal. Enamasti on need ka talveperiodil kasutamist võimaldavalt hooldatud, kuid tuleb ette ka kurioosumeid.

Kohtades, kus parklad on ülekoormatud või kus on ette näha mootorratturite olulist koondumist, tuleb arvestada mootorrataste parkimisvõimalustega.
Invaparkla peab olema valmis täitma oma ülesannet ning ei tohi muutuda lumeladustuskohaks.

Levald, A., Tartu Lõunakeskus, 2012
JALGRATTAPARKLAD

Elanike, töötajate ja külaliste jalgratastele sobivate turvaliste parkimisvõimaluste loomine on väga oluline, et reaalselt edendada jalgrataste kasutamist. Rattaparklate mahud ja võimalused peavad olema ajast ees ning need tuleb paigutada vähemalt sama kättesaadavatesse kohtadesse kui autoparklad. Jalgrattaparklaks reserveeritud ala on soovitatav kavandada varuga, mis võimaldab vajaduse korral kohtade arvu suurendada.


Jalgrataste parkla.
Levald, A., Kuningliku Kunstiakadeemia Arhitektuurikool, Kopenhaagen, 2010

Ka jalgrataste parkla võib olla üleküllastunud.
Levald, A., Frederiksberg, Kopenhaagen, 2010
Jalgrattaparkla seadmed peavad tagama, et:

• erineva rehvilaiusega jalgrattad oleksid hästi kinnitatavad ja ei läheks ümber;

• jalgratta kinnitamine parkimisraami külge oleks mugav ka siis, kui lähimad parkimiskohad on hõivatud;

• oleks võimalik jalgratta vargakindel kinnitamine;

• nende konstruktsioon oleks tugev ega oleks ümberlükatav.

5.6. Tänavaruumi elemendid

Tänaval paiknevad ehitised ja seadmed ei tohi olla liiklusohtlikud, halvendada nähtavust ja jalakäijate liikumistingimusi. Vajaduse korral peab kasutama jalakäijate liikumist suunavad piirdeid, kuid esmajärjekorras tuleb jalakäijate liikumist suunata kaudselt pinnakatte, istmete ning haljastusega. Materjali kasutamine peab olema loominguline, kuid samas arvestama kogu ehitise ja ehitusmaterjali elukaart.

Liikluskorralduslikul märgistusel, välismööblil, erinevatel mahutitel, pollaritel, ühenduskappidel, valgustitel ja reklaamidel on omadus koonduda jalgteele. Jalg- ja könniteedel ei tohi olla ka teisi nende kasutuslaiaust vähendavaid ja liikumist takistavaid objekte, nagu näiteks kioskid, istmed, prügikasid, raha- ja kaubaaumandit ning teede kasutamist takistavat sajat, nagu näiteks kioskid, istmed, prügikasid, raha- ja kaubaaumandit ning teede kasutamist takistavat sajat.

Takistamatu liikumise tagamiseks jalgteedel tuleb arvestada vaba alaga, mille kõrgus on 210 cm (oksad, varikatused, reklamaatsildid).

Ka suur osa motoriseeritud tänavakasutajate huvidest lähtuvatest vahenditest paiknevad könniteel ning võivad tänava risustada. Kõik eelnimetud elemendid võivad olla vaegnägijatele ohlikud ning takistada kärude, ratasoolide ja jalgratastega liikujate sujuvat liikumist. Ametkonnad, kes vastutavad selliste objektide eest, peavad kaaluma, kuidas korrastada nende visuaalset mõju ja vähendada takistusi tänaval liikujatele.

Tee kasutamist ajutiselt piiravate takistustest, nagu näiteks kaevetööd või teeremont, tuleb piisavalt varakult ette hoiata vastavate hoiatusmärkidega ja vaegnägijaid helisignaalidega. Tagada tuleb ajutisest takistustest mugav ja turvaline möödapaas nii tavalikele tuletudele kui puudega isikutele või anda soovitus alternatiivse liikumistee valikuks. Selle kohta on häid näiteid nii Saksamaa kui Soome praktikast. Ka Eestis tuleb avalikus ruumis toimuvate tööde ajal ruumi kasutajatesse arvestamisega suhtuda.

Liikumine & liikumisteed

Liikluskorraldusmärgistus

Liikluskorralduslikku märgistust peab olema nii palju kui vajalik ja sameks nii väähe kui võimalik. Märgistus võib tänavaruumi risustada seal, kuhu eri põhjustel on lisatud märke ilma tänavaruumi kui tervikut arvestamata. Märkidega risustatud keskkond ei ole atraktiivne, võib tekitada ohuolukorda ja kahjustada tänava kasutajaid.[18] Läbimõtlemata paigutatud või ülekuhjatud märgistust võib kiire liiklemisel valesti tõlgendada või mitte tähele panna.

Väikese liiklusega tänavatel tuleb kasutada tänasest oluliselt vähem liiklusris. Liiklusmärkide kasutamise piiramine parandab visuaalset tänavakeskkonda, vähendab teabemüüra ning sõidukijuhite iseseisvalt oma otsustusi kaalutlemata. Seega väheneb ka sõidukite liikumiskiirus ja tõuseb ohutus.

Ühegi liiklusmärgi paigaldamist ei nõua seadus. Seadus annab vaid vajaduse korral selleks üldarusaadava võimaluse. Märkistus, millel pole selget otstarvet, on mõistlik perioodiliselt üle vaadata ja eemaldada. Lähtuda tuleb sellest, et märgi vajadus peab olema põhjendatud ja otstarve selge. Kui märgistus probleemi ei lahenda, tuleb see teatud aja jooksul eemaldada ning kasutada teisi asjakohaseid vahendeid (nt märgistatud tänavaaugu lappimine).

Liiklusohutuse seisukohalt olulisi asukohti on võimalik tähistada ning piisavalt esile tuua ka teistel viisidel (nt teepinna katte muutused, tänava mõõtmed, liigendus jms).

Liikluskorralduslikku märgistust peab olema nii palju kui vajalik ja sameks nii väähe kui võimalik. Märgistus võib tänavaruumi risustada seal, kuhu eri põhjustel on lisatud märke ilma tänavaruumi kui tervikut arvestamata. Märkidega risustatud keskkond ei ole atraktiivne, võib tekitada ohuolukorda ja kahjustada tänava kasutajaid.[18] Läbimõtlemata paigutatud või ülekuhjatud märgistust võib kiireli liiklemisel valesti tõlgendada või mitte tähele panna.

Väikese liiklusega tänavatel tuleb kasutada tänasest oluliselt vähem liiklusris. Liiklusmärkide kasutamise piiramine parandab visuaalset tänavakeskkonda, vähendab teabemüüra ning sõidukijuhite iseseisvalt oma otsustusi kaalutlemata. Seega väheneb ka sõidukite liikumiskiirus ja tõuseb ohutus.

Ühegi liiklusmärgi paigaldamist ei nõua seadus. Seadus annab vaid vajaduse korral selleks üldarusaadava võimaluse. Märkistus, millel pole selget otstarvet, on mõistlik perioodiliselt üle vaadata ja eemaldada. Lähtuda tuleb sellest, et märgi vajadus peab olema põhjendatud ja otstarve selge. Kui märgistus probleemi ei lahenda, tuleb see teatud aja jooksul eemaldada ning kasutada teisi asjakohaseid vahendeid (nt märgistatud tänavaaugu lappimine).

Liikluskorralduslikku märgistust peab olema nii palju kui vajalik ja sameks nii väähe kui võimalik. Märgistus võib tänavaruumi risustada seal, kuhu eri põhjustel on lisatud märke ilma tänavaruumi kui tervikut arvestamata. Märkidega risustatud keskkond ei ole atraktiivne, võib tekitada ohuolukorda ja kahjustada tänava kasutajaid.[18] Läbimõtlemata paigutatud või ülekuhjatud märgistust võib kiireli liiklemisel valesti tõlgendada või mitte tähele panna.

Väikese liiklusega tänavatel tuleb kasutada tänasest oluliselt vähem liiklusris. Liiklusmärkide kasutamise piiramine parandab visuaalset tänavakeskkonda, vähendab teabemüüra ning sõidukijuhite iseseisvalt oma otsustusi kaalutlemata. Seega väheneb ka sõidukite liikumiskiirus ja tõuseb ohutus.

Ühegi liiklusmärgi paigaldamist ei nõua seadus. Seadus annab vaid vajaduse korral selleks üldarusaadava võimaluse. Märkistus, millel pole selget otstarvet, on mõistlik perioodiliselt üle vaadata ja eemaldada. Lähtuda tuleb sellest, et märgi vajadus peab olema põhjendatud ja otstarve selge. Kui märgistus probleemi ei lahenda, tuleb see teatud aja jooksul eemaldada ning kasutada teisi asjakohaseid vahendeid (nt märgistatud tänavaaugu lappimine).
TÄNAVAHALJASTUS

Tänavahaljastus rõhutab tänavate liigitust ja kulgu, rikastab tänava kui kõigi seal liikujate eluruumi ilmet ning parandab ruumis orienteerumist. Eriti keskkonnatöhusad, kohamõju- sad ja linnakeskkonda inimmõõtmeliselt tasakaalustavad on puisteed, mida tuleb teiste elementidega samaväärselt süsteemselt arvestada tänavasüsteemi planeerimise algusest peale.

Levald, A., Brüssel, 2009

Tänavaäärne kõnnitee on söiduteest haljasriba ning alleega eraldatud. Levald, A., Porvoo, 2009


Ka väike haljastatud istumisnurk ilmestab linnaruumi ning pakub istumisvõimalusi. Levald, A., Brüssel, 2009
Mida laiem on haljasriba, seda suurem on haljastuse õhku puhastav mõju. Sõidukite tekitatud õhuvooluga kulgevad saastained peamiselt 1,2 m kuni 2 m kõrgusel. Seetõttu on just sellisel kõrgusel paiknev haljastus kõige efektiivsem. Eriti aladel, kus on oodata tõsiseid saasteprobleeme, tuleb tähelepanu pöörata taimeliikide sobivusele.

Haljastus on väga oluline linnaruumi rikastav ja liigendav element, millega on võimalik siduda ka tänavamööblit, katendeid jm. Ka suure koormusega tänavatel on võimalik tänavahaljastusele ruumi leida ja kasvutingimused tagada. Linnapuud võivad ilmestada välisruumi ka parklate katusel.

Levald, A., Kristiine, Tallinn, 2010

Tänavapuud rahustavad liiklust tänavaristmikul ülekäigu ees.
Levald, A., Brüssel, 2011

Arvestada tuleb sellega, et pindmiste juurtega puud võivad valesti rajatud teekatte lõhkuda.
Levald, A., Kristiine, Tallinn, 2010

Kandva kasvupinnase kasutamine tänavahaljastuse rajamiseks keerulistes kasvutingimustes.
Levald, A., Pasteurinkatu, Helsingi, 2006
Puude istutusala kõrgendusega ümbristsemine võimaldab vähendada tallamiskoormust juurtele ning lisada ka muid tänavaruumi rikastavaid elemente, näiteks istmeid.

Levald, A., Ventspils, 2010

**KUNST LINNARUUMIS**

Et kaasata linna avalikku välisruumi võimalikult palju kasutajaid, on väga olulised tänavakunst ning mitmesugused kunstiobjektid. Kunstiobjektide teket tänavaruumi peaks suudustama sarnastel alustel, nagu see toimub avalike hoonete kavandamisel ning ehitamisel. Tänavaehitusvahenditest tuleks eraldada teatud protsent (nt 1%) tänavakunsti tellimised avalikku linnaruumi. Oluline on piirkonnale ainuomase kuvandi loomine kunsti kaasab ning sellesse protsessi võimalikult kõigi linnaruumi tarbijate kaasatõmbamine.

H. C. Andersen kuulub rahvale.

Levald, A., Kopenhaagen, 2010

Kaasav kunst linnakeskkonnas.

Levald, A., Ventspils, 2010

Kaasava elukeskkonna juhendmaterjal

193

Liikumine & liikumisteed
Kunst linnavalitsus.

Pukk, M., Bilbao, Hispaania, 2006

Kombatav kunstitutvustus välisruumis.

Levald, T., Aafrika kunsti muuseumi iseseepääs, Monte Palace Tropical Garden, Madeira

Levald, A., Luksemburg, 2005

Kunst linnavalitsus.

Levald, A., Luksemburg, 2005

Inimmõõtmeline kombatav kunst linnavalitsus.

Levald, A., Luksemburg, 2005

Kaasav kunst linnavalitsus.

Levald, A., Ventspils, 2010

Kaasav elukeskkonna juhendmaterjal

194

Liikumine & liikumisteed
TÄNAVAMÕÖBEL


Välisruum jalakäijate transiitala, puhkekohtade ja äritsooniga.
Levald, A., Luxemburg, 2005

Takistustevaba jalakäigutänav.
Levald, A., Luxemburg, 2005

Väljak inimestele istumis- ja kohtumiskohtadega.
Levald, A., La Scala esine väljak Milano, 2004
Pingid
Mida rohkem on linna välisruumis pinke, seda rohkem leiavad need kasutust jalapuhkamiseks ja suhtlemiseks, aga ka kohtumis- ja kogunemiskohtadena. Oluline on, et pingid asetseid linnaruumis loogilistes asukohtades ning väärtustaksid keskkonda, mitte ei risustaks seda.

Paigutus

Pingide paigutatakse võimalikult tuulevaikusele ja päikeselisele asukohale. Juurdepääs peab olema hea. Liikumisteede aarde asetatakse pingid 50–100 meetrise sammuga. Pingid kinnitatatakse tugevale ja ühtlaselt siledale aluspinnale stabiilselt. Määruses on nõutud, et kaldega tee kõrvale tuleb iga 300 m, maksimaalselt 400 m järel rajada istepingi puhkekoht. Puhkekohta tähistavad ja suunavad viidad peavad olema hästi märgatavad.*

Istmete paigutamisel tuleb arvestada ligipääsetavust, soovitav minimaalne vahekaugus äärekivist on 1,5 m. Pingi kõrvale arvestatakse 90 cm vaba ruumi, kuhu saab liikumist takistama paigutada ratastooli või lapsekäru. Arvestades ratastooliga, on prügikonteineri vähim vahekaugus pingist 90 cm.

Korrekselt piiratud istepink lapsekäru või ratastooli seisukohaga rannapromenaadil.
Levald, A., Kergliiklustee Rocca al Mare ja Stroomi vahel, Tallinn, 2009

Hästi kasutatavad ja taktiilselt tähistatud istekohad. Üleminekud pinnakatete vahel on hästi tajutavad.
Levald, A., Dublin, 2011

Istumisvõimalused vee ääres.
Levald, A., Örestad, 2010

Universaaldisaini printsiipe järgiv tänavamööbel.
Pukk, M., Barcelona, 2011
Vorm ja materjal
Eelistatav on seljatoega pink, sest see on mugav kõigile kasutajatele. Pink peab olema ümbritsevast keskkonnast selgelt eristuv oma värv või materjali poolest ja samas linnaruumi kujunduslikult hästi sobituma. Pingi materjal peab olema praktiline, meeldiv katsuda ja mugav istuda. Vorm peab olema ekstreemsete kumeruste ja kõverusteta.

Istekoha laiuseks arvestatakse 60 cm inimese kohta, näiteks kolme inimese pink on 1,8 m pikk. Pingid võivad olla erineva kõrgusega, tavaistme kõrguseks on 45 cm, 50–55 cm kõrgune iste sobib paremini vanureile, 30 cm lühikavulistele inimestele ja lastele. Mugav seljatugi on 110° kaldega.


Materjale, mis kuumenevad üle või muutuvad talvel jääkülmaks, nt metall, iste- ja toetustasapindadeks ei kasutata. Üheks end enim õigustanud kattematerjaliks on puit. Puitkatte lahendamisel tuleb arvestada, et erinevate detailide, nt pingipulkade vaheline vahe, ei tohi olla selline, et sinna jääks kinni väikelapse käsi ning lahendus soosiks vandalismi ja objekti reostamist.

Kõik detailid tuleb lahendada nii, et neisse poleks võimalik takerduda ega end seeläbi vigastada. Pingi lähedal peaks olema ühtlane ja neutraalne valgustus, tagatud peavad olema vähemalt pingi asukoha valgusklassi miinimumnõuded.[20]
Kioskide paigaldamine


Teenindusala peab olema visuaalselt eristuv ja hõlpsalt leitav. Valgus peaks teenindusala markeerima. Mugavaks teenindamise kõrguseks loetakse kuni 110 cm. Varikatuse alumine serv ei tohi olla madalamal kui 210 cm. Nimetatud kõrgusest allpool ei olla ühtki eenduvat detaili, nt reklaamlippe, mille otsa oleks võimalik takerduda. Üldise selguse huldes peaks kogu kioskide välisperimeeter olema vaba segavatest detailidest.

Kunstiliselt kujundatud iste rannapromenaadil.
Levald, T., Funchal, Madeira, 2010

Massiivne ja tugev kivipink sobib hästi linnakeskkonda.
Pukk, M., Toledo, Hispaania, 2007
Makseautomaadid

Tekstid võiksid lisaks eesti keelele olla veel vähemalt kahes keele keskkonnas. Ainult puutetundlikult kasutatavad ekraanid vääristavad nägemispüüdega inimeste teenindamise ning on keerulised kasutada eakatel, mistõttu on soovitatav teabe dubleerimine auditiivse teabega.

*Vt 4. peatükk: Kommunikatsioon, lõik: Visuaalne kommunikatsioon.

Hästi ligipääsetavad välkaubanduskioskid linnavaljakul.
Pukk, M., Madrid, Hispaania, 2007
Veevõtukohad
Veevõtukohad peavad olema mugavad kasutada ka lastele ja ratastoolis liikujatele. Veevõtukoht asetseb samas tasapinnas ümbritsevaga, pinnakattematerjal veekraani ümber ei tohi olla libe. Ette tuleb näha koht üleliigse vee koheseks äravoolamiseks. Veevõtukoha ees peaks olema vaba ruumi 150 cm ning külgedel 90 cm. Veekraani mugav kõrgus on 75–85 cm. Veekraani avamise ja sulgemise mehhanismi peab olema lihtne kasutada, nt vajutusega.

Prügikastid
Paigutus
Prügikastid paigutatakse otstarbekatesse kohtadesse, hoonete sissepääsude, istmete ja ühistranspordipeatuste vahetusse lähedusse. Parkides peavad need olema üksteisest mõistlikul kaugusel. Mitte kunagi ei asetata prügikaste liikumisteele.

Prügikaste peab olema piisavalt, et ei tekiks olukorda, kus inimene peab prügikasti otsimiseks oma liikumissuunast kõrvalte kalduma ning mugavam on visata mittevajalik maha. Eesti kliimas on otstarbekas kasutada prügikaste, mis on pealt kaetud ning mille ava on optimaalse suurusega, et sinna saaks visata avalikus ruumis tekkivat väikeprügi, mitte aga suuremahulist olmeprügi.

Hästi kasutatav veevõtukoht koos prügikastiga.
Levald, A., Notre-Dame kalmistu, Luxemburg, 2005

Lillekasti ning prügikasti kombinatsioon.
Levald, A., Leisnig, 2008
Vorm ja materjal
Prügikasti maksimaalne kõrgus on 1 m; ava prügi jaoks ca 90 cm kõrgusel. Prügikast peab olema valmistatud vastupidavast ning kergelt hooldavast materjalist (metall, plastik ja nende erinevad sulamid). Prügikastil ei tohi olla teravaid nurki ega servii.


Piirised
Paigutus
Piiredes on soovitatav kasutada kolme erinevõõa kõrgusega horisonentaaloontast:
- 95 cm kõndivate täiskasvanutele,
- 75 cm ratastoolidele ja lapsele,
- 10–25 cm kukkumise vältimise ja ala piiramise tähistamiseks.

Peab arvestama, et laiema kui 11 cm vertikaaljaotuse puhul pole turvalisus täielikult tagatud.

Põhiliikumissuuna eristamine värvi ja pinnakattematerjaliga. Tööstetud aärtestega istutusalad hõlbustavad nägemispuudega inimeste liikumist. Aäärtel saab ka istuda.
Levald, A., Dublin, 2011

Piirded
Paigutus
Piirdepaigutatakse treppide, panduste ja liikumisteede serva, reljeefimuutuse jm ohuallika, nt sõidutee, vahetusse lähedusse.

Vorm ja materjal
Piirete on soovitatav kasutada kolme erinevõõa kõrgusega horisonentaaloontast:
- 95 cm kõndivate täiskasvanutele,
- 75 cm ratastoolidele ja lapsele,
- 10–25 cm kukkumise vältimise ja ala piiramise tähistamiseks.

Peab arvestama, et laiema kui 11 cm vertikaaljaotuse puhul pole turvalisus täielikult tagatud.

Põhiliikumissuuna eristamine värvi ja pinnakattematerjaliga. Tööstetud aärtestega istutusalad hõlbustavad nägemispuudega inimeste liikumist. Aäärtel saab ka istuda.
Levald, A., Dublin, 2011

Tihe ja turvaline piire.
Lubjak, I., Barcelona, Hispaania, 2011

Kaasava elukeskkonna juhendmaterjal 203

Liikumine & liikumisteed
Postid ja pollarid

Paigutus
Valgustite ja kontaktliini riputuskonsoolide postid paigaldatud magistraalidel sõidutee äärekivist vähemalt 0,75 m ja kõrvaltänavatel 0,5 m kaugusel. Samas peavad need olema võimalikult eraldusribal väljapool könniteed, et mitte takistada könniteel liiklejaid.

Kui postide, pollarite või muude seadmetega soovitakse tökestada sõidukite läbisöitu ja samas mitte takistada jalakäijat või abiavahendiga liikujat, peab nende vahekaugus olema vahtmikus 1,0–1,5 m. Pollarid ja postid, mis asuvad könni- ja/või kergliiklusteel, tuleks vaegnägijatele tajutavalt märgistada ja/või ümbristseda 20–50 cm kauguselt hoiatusriba/taktiilse katendiga.

Vorm ja materjal
Pollari soovitatav kõrgus on 90 cm. Madalamad ning taustaga sama tooni pollarid on eriti ohtlikud vaegnägijaile ning eakatele. Pollarid peavad olema siledad, visuaalselt nähtavad – ümbritsesest selgelt eristuvad oma värvitoonilt või materjalilt –, neil ei tohi olla väljalaatuvaid detaile, kuhu on võimalik takerduda.

Autoliikluse ja könnitee toimiv ja turvaline eraldamine kitsal kõrvaltänaval.
Levald, A., Dublin, 2011
5.7. Ühisliiklus

ÜHISÖIDUKIPEATUSED

Ühissöidukite liinide arv, marsruudid ja peatuskohad planeeritakse nii, et sõitjate teekond peatusesse oleks läbitav vähima ajakuluga. Peatuste paigutuse määrab asustustihedus, ühissöidukite keskmine intervall, oluliste ühiskasutatavate hoonete ja peamiste matkasihtkohade asukoht, jalgsikäigukaugus lähtekohast ning ülekäigukohad ja kõnniteede paiknemine.

Peatuste vahekaugus bussi- ja trollibussiliinidel on 400–800 m, trammiinil 400–600 m. Linnakeskustes ja tihead asustusega piirkondades kasutatakse väiksemaid ja hõredalt asustatud piirkondades suuremaid vahekaugusi. Intensiivse ühelt liinilt teisele ümberistumise korral ei tohi jalgsikäigukaugus linnades ületada 100 m. Ümberistumiste mugavamaks muutmiseks tuleb eri liikumissuundadele valida sellised peatuste asukohad, mis oleksid kõnniteedega hästi ühendatud ja tänavaületustest avatud arv oleks vähim.


Sademete eest kaitstud elavalt kasutatav väliooteala lennujaamas.
Ooteala pikkus ei tohi olla lühem peatuses üheaegselt viivivate ühissõidukite kogupikkusest ning ühissõiduk peab saama peatuda täpselt õiges ja kättesaadavas kohas, et väljumine ja sisenemine transporti oleks turvaline ja piisavalt ligipääsetav. Kui korraga jõuab peatusesse kaks ühissõidukit, peab tagumine ootama oma järjekorda, mitte avama uksi ootealast eemal. Bussi õiges kohas peatumine välistab kaootilise sagimise.

Saabuval sõidusuunal ei tohi olla nähtavust piiravaid takistusi. Ühissõidukipeatuses ja ühissõidukis edastatav ajakohane informatsioon peab olema hästi nähtav ja mõistetav ning mitte reklaami poolt teisejärguliseks tõrjutud. Suure liiklusagedusega kergliiklustee kohal tuleb ooteala koos ootekojaga paigutada peatuse ja kergliiklustee vahele.

Ratastooli kasutajale on oluline äärekivi kõrghus, mis tagab võimalikult sujuva sissepääsu bussi. Talle mugav manööverdamismaa on 1,5–2 m. Buss peaks peatuma maksimaalselt könnitee ääres, et ratastool ei takerduks erinevate tasapindade vahele.
Ootekoda
Masinaga hooldamiseks on minimaalne ooteala laius 2,25 m. Manuaalselt puhastatav ala on 1,5 m sõiduteeni. Ootekoja minimaalne soovitatav sisekõrgus on 2,2 m. Vaba ala ootepaviljonil on 0,9 m, optimaalne 1,5 m, mis on piisav abistaja või juhtkoera liikujale. Ratastooli ümberpööramiseks on vajalik ala 1,5 m, elektrilisel ratastoolil 2,5 m.

Ootekojas peaksid olema:

- iste- ja toetustasapinnad, mille kõrguseks on 45 cm istumiseks, 70–90 cm toetumiseks ja nõjatumiseks;

- ühistranspordiliinide kaart ja sõiduplaan, mis peavad olema loetavas kirjas ja mõistlikul kõrgusel, et olla ka lapsel ja ratastooli kasutajale nähtavad (vt peatükist kommunikatsioon). Kui kõik sõidukid ei ole ligipääsetavad, siis tuleb need sõiduplaanis eraldi tähistada.

- valgustus, mis peab looma turvatunde ootajaile ning hea nähtavuse ühissõidukijuhile;

- prügikast, mis asetsegu peatuse kõrval, et vältida suitsetamist ootepaviljonil sees.

Hea ootekoja lahendus, mille taha jääb halvasti kasutatav tänava ruum.
Levald, A., Mere pst, Tallinn, 2011


Oluline on ühissõidukijuhi üldine teeninduskultuur ja empaatiavöime, et inimesed, kellel bussi sisemenemine võtab kauem aega, saaksid ühissõidukisse ja oma kohale turvaliselt ja öigel ajal, enne kui sõiduk liikuma hakkab.

Ühissõidukid
Ühissõiduki teeb mugavaks ja turvaliseks:

1. sobiv sõidukisse sisse- ja sealt väljapääs;
2. vahekäikude piisav ruumikus;
3. ligipääs istumiskohtadele;
4. sõidu turvalisus;
5. piisav info sõidu kulgemisest.


Väga oluline on turvalisus. Ühissõiduk peab olema puhas, põrand ei tohi olla libe. Piisavalt peab olema kinnihoidmiskohti nii seisjatele kui istujatele. Ete tuleb näha võimalused kinnitada turvaliselt ratastool ja lapsekäru. Info sõidusuunast ja peatustest on pidevalt jälgitav.

Bussi sisenemisel on tähtis, et bussi põrandad kõrgus ei voi ühegi ukse juures olla üle 35 cm ning astme kõrgus üle 25 cm. Turvaseadmed ühissõidukis peavad olema töökorras ja kasutusvalmis.
Kõiki kaasava ühistranspordi ooteala põhimõtteline lahendus.
5.8. Infoedastus

Avalikes kohtades (teedel ja tänavatel, väljakutel ja parkides), eriti ristmikel, jaamades ja ühissõidukite peatustes tuleb pai-galdada hästi loetavad ja kaugelt märgatavad orientiirid, mis teatavad kõigile liikujatele, sh eriti liikumispuudega isikutele ja vaegnägijatele, ehituslikest takistustest ning muudest võimalikest ohtudest.

Vaegnägijatele tuleb anda teavet liikumisteel eelolevatest muutustest (trepile, ülekäigurajale või takistusele lähenemine, ohutussaare lõppemine, tee suuna muutus jms) kas hästi tajutavate optiliselt kontrastsete suunaviitade, pinnakatte erinevuse, taktiilsete katendite, reljeefsete võõride, ohutuspiirete või helisignaali abil. Arvestada tuleb, et helisignaal oleks selgesti mõistetav ning verbaalselt edastatud informatsioon ei hajuks muu müra foonil mõistetamatuks.


Infotahvel linna- ja arealruumis, mille kasutamine on mugav ka ratastoolis liikujale.
Vaikla, T.-K., Bergamo, 2011

Kaasava elukeskkonna juhendmaterjal 211 Liikumine & liikumisteed
Kui vajalikult panustada terviklahendusse, on võimalik edastada teavet linna-ruumist ja selle olulistest objektidest ka vaegnägijatele arusaadavalt. Linnaplaanidel ja -skeemidel, reisijuhtides, transpordiskeemidel ja -teatmikes jne tuleb ära näidata ehituslike takistustega või takistusteta alad ja hooned (hotellid, muuseumid, teatrid, kinod, muud ühiskasutatavad asutused ja objektid, parkimisvõimalused) ning ratastooli kasutajatele kohaldatud ühissõidukite liiklusmarsruudid.

Infokiosk linna-ruumis, mille kasutamine on mugav ka ratastoolis liikujale.
Pukk, M.
5.9. Liikumine haljasaladel ja looduses, terviseliikumine

Ehituskultuur seisneb ehitatud keskkonna tasakaalustatudes ning teadlikult looduskeskkonnale arenguruumi ja -vöimaluste jätmises. Linnalik ja looduslik miljöö peavad olema linnas tasakaalustatud ning jalgteedega ühendatud.

Lisaks kergliiklusteede ja jalakäiguühenduste olemasolule on oluline ka nende iseloom. Inimene vajab linnakeskkonnas nii võimalikult aktiivset pardikuid ja teadlikult arenguruumi. Linnas peavad olema linna keskkonna tasakaalustatud ning jalgteedega ühendatud.

Maastikud ja haljasmaad tuleb haljasühenduste kaudu sihutada kogu linna hõlmavaks süsteemiks. Ideaaljuhul on linn lisaks tehnovõrkudele ning autoteedele kaetud rohealad ja rahvalinnuse elukeskkonnas. Nii saavutatakse korraga mitu tulemust. Ühest küljest loob see linnas võimalikult loodusliku keskkonna, ühest teisest küljest on seotud ökoloogiliste koridoritega, kuid see tulemus on kõrvaldav.

On erinevaid kaalutlusi selle kohta, kui suured peaksid linna välisruumis olemas olevad võimalikult paljudele linna elanikele ja külalistele kättesaadavad ja kasutatavad, samuti kui kaugel kasutajast need võimalikud paiknedaksid.

Erineva iseloomuga liikumisateed linnas peavad olema katkematud. Numbriga 1 on tähistanud jalgteed hoonestatud keskkonna (linna-keskkonna), numbriga 2 on tähistanud jalgteed rohealadel (looduskeskkonna).

Printz, D., Städtebau, Bd.1., 1983
Neid ühendab tõdemus, et mugava kättesaadavuse tagamiseks ei tohiks park või parkmets asuda kodust liiga kaugel ja haljasalad peaksid olema kõigile võimalikult hästi ligipääsetavad.


Eestis puuduvad üleriigilised elanikkonna välisruuminõudlusi, soove ning vajadusi süsteemselt kajastavad uuringud. Tallinna rohealade teemaplaneeringus on kohandatud ja kättesaadavuse analüüs is rakendatud alljärgnevad asumi, linna ja linnaosa tähtsusega rohealade, puhke- ja spordiobjektide kaugust elukohast.[29]

Igapäevavajaduste mugav kättesaadavus linnakeskkonnas.
Printz, D., Städtebau, Bd.1., 1983
<table>
<thead>
<tr>
<th>Objekt</th>
<th>Teised samal kaugusel</th>
<th>Kaugus (m)</th>
<th>Kättesaadavus (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>soovitav</td>
<td>max</td>
</tr>
<tr>
<td><strong>Mänguväljakud</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–6 a</td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7–12 a</td>
<td></td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>13–17 a gümnaasium</td>
<td></td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td><strong>Elamulähedane</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>istekoht</td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td><strong>Elukolähedane</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>haljasala</td>
<td></td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td><strong>Asumipark</strong></td>
<td>lasteaed, põhikool,</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>spordirajatis, igapäevane</td>
<td>igapäevane ostukoht,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ostukoht, eakate kogunemiskoht,</td>
<td>ühistranspordipeatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Linna(osa) park, parkmets</strong></td>
<td>suurem spordirajatis,</td>
<td>600</td>
<td>1000</td>
</tr>
<tr>
<td>iganädalane ostukoht</td>
<td>iganädalane ostukoht</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asumi, linna ja linnaosa tähtsusega rohealade, puhke- ja spordiobjektide kaugust elukohast.
Tallinna rohealade teemaplaneering, 2008
LÄHILIIKUMINE

Linnaelanike liikumise ja sportimise hõlbustamiseks tuleb linnas säilitada mõistlikus kauguses elukohas võimalikult paljusid avalikku ruumi ja rohealasid, mis on ühistranspordiga ning eelkõige jalgsi ja jalgrattaga kergelt ligipääsetavad.

On hea, kui linnas leidub mitmeid väikeseid parke ja lähiliikumiseks sobivaid paiku elu- ja töökoha läheduses. Neist paljud mujalud kasutajate initiativiilt. Selget avaldub see maapiirkondades ja väiksemates alevikes ning linnades, kus vabadel maatükidel tekivad kohalike elani, tihti ka laste algatusel mänguväljakud, loodusliikumise, suusa- ja jooksurajad ning muud sportimispaljused. Linnades on sellised võimalused piiratud, kuid ka siin on näha spontaanselt väljakujunenud laste ja kadakasvanute mängimis-, liikumis- ja sportimispaljud.

Need peaksid sobima võimalikult kõigile kasutajagruppidele.

Lähiliikumispaikade loomisel elupiirkondadesse peetakse suures osas silmas laste sotsiaalset arengut. Kogu eluajal jooksul üles on kasutuslapse condu 80% lapsena (Soome spordi arengukava), mistõttu kordumises turvalisuse, õhulius ja tegevusvõimaluse on eriti olulised. Kodu-õhul on kordumisse piisavalt avar, et võimaldada lapse loomulikku liikumisteadega rahuldamist. Lapse kasvades laieneb liikumisala, milles ta tegutseb. Lapsed kasutavad selles kõiki mängu-, liikumis- ja sportimispaljusid. Hea ümbruskond

Rohealade kättesaadavus Tallinnas.
Levald, A., E. Pukkonen, Tallinna rohealade teemaplaneering, 2008
liikumiseks võtab arvesse erialaliste laste lähtekohti maailma avastamiseks.
Neile põhimõtetele tuginedes on Soomes välja töötatud lastele mõeldud liikumispaikade võrgustiku planeerimise ja väljaarendamise lähtekohad, **milles arvestatakse:**

- kodulähedust;
- mugavat ja ohutut juurdepääsul lähiliikumispaikadele;
- kõigi vanuserühmade vajadusi;
- laste arengu vajadusi;
- liikumis- ja sportimispaikade sellist kavandamist ja paigutust, et need toetaksid last oma kodukandi ja -linna avastamisel ning elukeskkonnaga kohanemisel;
- laste liikumispaikade mitmeotstarbelisust ja aastaringset kasutatavust;
- lähiliikumispaikade piires laste omaalgatusliku liikumise toetamist ja selle turvalisuse tagamist.[30]

Lähiliikumispaikadele esitatavate nõuete ja tingimuste seas on seega oluline turvalisus, loodusesõbralikkus, esteetilisus, mugavus ja kerge ligipääsetavus. Need peaksid olema kõikidele soovijatele kasutatavad kas tasuta või sümboolse tasu eest.

Suured pargi- ja metsaalad on samas vajalikud, et inimesed saaksid harrastada erinevaid liikumisviise, samuti nautida vaikust ja rahu liiklusmüürist ja muudest häiringutest eraldatud aladel.

Liikumiskohti ja -teid muudab ühelt poolt poole osalejate käitumine spordi- ja liikumisharrastuse laadist lähtuvalt. Teiselt poolt kirjutab liikumiskohtade iseloom ette seal võimalikud tegevused. Paraku ei ole nende iseloom kaugeletki mitte alati vastavuses asukoha ja kasutajate ootuste ning vajadustega. See killustab keskkonda ja muudab ka väärtushinnangud ebaselgeks.


Täiskasvanud inimesele piisab igapäevase vajaliku koormuse saaniseks jalgsi kolme kilomeetri läbimisest. Nii liikumisvõimaluste rikastamiseks kui ka klassikaliste välialade (jooks, suusatamine, maastikurattasõit, orienteerumine) tingimuste säilitamiseks ja parandamiseks on vaja säilitada linnas olemasolev rohealad, samuti arenenud neid elamuvärskele ühendavaid teid ning liikumisradu. [29]

Halvasti läbitav metsaalune polikliini ees.
Levald, A., Mustamäe Polikliini esine puudetukk, Tallinn, 2010

Korratud pinnaseteed elamutevahelises elukeskkonnas ei sobi liikumiseks ühelegi kasutajagrupile ning soodustavad igapäevatöimingutes autode kasutamist.
Levald, A., Mustamäe, Tallinn, 2009

Liikumine & liikumisteed
**LIGIPÄÄSETAVUS**


Sisese ligipääsetavuse tagamiseks tuleb luua hästi toimiv teedevõrgustik, mis toetab erinevaid kasutajagruppe ja liikumisviise ning on ka kauemates punktides hea ühenduse eelduseks erinevate kohtade vahel. Liikumisrajad peaksid moodustama suletud ringteekonna, et oleks võimalik alguspunkt naasta, samuti peab olema marsruutide pikkus paindlikult kombineeritav kasutaja võimetest lähtudes.

Põhiradad eesmärk on luua tõhusad ja paljudele kasutajagruppidele mõeldud liikumisvõimalused nii maastikukaitseala läbivale kui ka sisesele liiklemisele. Arvestatud on linnaosi ja asumeid ühendavate ja tõmbekeskusi omavahel siduvate kergliiklusvuutadade kulgemist ning nende paiknemist maastikukaitseala-siseste liikumissuundade suhtes.

Parkimisvöimalused
Piirkondlike või ülelinnalsele tähtsusega rohealade juurde tuleb luua parkimisvöimalusi. Tuleb arvestada, et liikumispuudega inimene, kes soovib külalikult mõnda vabaõhuüritust või parki, ei leia sageli sobivat kohta auto jätmiseks või siis asub see koht külalikutes seas kaugel. Seega tuleb parkimisvöimalus tagada võimalikult sihtpunkti läheidal. Vajaliku ruumi saamiseks on võimalik paigutada üks või mitu invaparkimiskohta piki jalgratide või mõnda muud avatud ala, kuhu teised sõidukid ei tohi parkida. Samas ei tohi jalgratee olla nii kitsas, et autost väljuv juht blokeeriks selle mõneks ajaks täielikult.

LIIKUMISRAJAD


Nõmme-Mustamäe maastikukaitseala liikumisradade skeem
Levald, A., Tallinn, 2010
Samas on oluliseks positiivseks sammiks see, kui takistustevabaks suudetakse muuta ka osa liikumisteedest. Iga uus takistustevaba liikumistee laiendab liikumisvõimalusi ning on panuseks kaasava elukeskkonna takistustevaba terviksüsteemi loomisel.


Sellise kõrgustevahe ületamiseks vajavad mõned kasutajagrupid lifti.
Levald, A., Pyhatunturi Isokuru, Soome, 2002
Rajad on kasutatavad ka terviseradade, matkaradade ja looduse öpperadadena. Teemaplaneering määrab piiratud liikumisvõimega inimeste, sh laste ja eakate inimeste vajadusi arvestavat ehituspõhimõtted radadele ja nendega seotud ühendustele. Põhiradade baasil ettevalmistatud rajad peavad sisaldama elemente, mis võimaldavad maastikukaitseala erivajadustega kasutajatele mugavad ning ohutud liikumisvõimalused, lähtudes vajadusest luua oluliste sihtpunktide vahel võimalikult lühikesed, katkematult kulgevad ning vähima võimaliku kaldega liikumisradad.

Tavapärane kõigile kasutajagruppidele piisava laiusega liikumisrada looduslähedases keskkonnas.
Levald, A., Pääsküla raba, Nõmme, 2001

Äärekividega piiritletud hästi läbitav jalgtee mägisel maastikul.
Levald, A., Forstbotanischer Garten, Tharandt, 2008
Lage metsaalune ei taga kõigile ligipäsetavust.
Levald, A., Harku mets, 2003

Pinnasetee kvaliteet võib olla väga kõikuv ning ootamatu.
Levald, A., Harku mets, 2003

Sellisel rajal liikumine on ka kõige tugevamatele katsumuseks.
Liikumise iseloomust ja liikujast sõltuvalt ei ole kõik kirjelduses toodud tunnused alati olulised. Konkreetselt liikumistee iseloomustamisel rakendatakse vaid selle liikumistee kasutusvõimalusi määra vaid tunnusedid.

Liikumistee tunnuste hulgast võib eristada miinimumnõudeid ning eri raskusastmeid. Miinimumnõude all mõistetakse iseisvaks kasutamiseks vajalikke tingimusi, mis peavad olema alati täidetud. Paljud neist nõuetest on toodud normides ja standardites. Oluline on arvestada ka erinevate tunnuste kombineerumist (nt kalle ja pinnakate). Miinimumnõudeid võib alati täiendada liikumistee kasutamist kergendavate soovituslike nõuetega, mis ei ole samas tee kasutusvalmiduse eelduseks.\[32\] Eestis vajab vastav miinimumnõuete süsteem uurimist ning kasutajaid kaasavat kohandamist.

Kasutada võib mitmeid erinevaid meetodeid, peaasi, et kasutaja poolt vastuvõetav teave oleks arusaadav ning õige. Raja algusesse on asjakohane lisada ka kasutatud märgiste tähendused.

Loodusradadel pole alati korraga palju külastajaid ja seetõttu peab raja alguses olev informatiooni vastama tegelikkusele. Valeinfo tõttu hätta sattumisel võivad olla rasked tagajärjed, kuna abi ei pruugi kuigi kiiresti saabuda.

Liikumisteedele seatavates nõuetes eristatakse:

- liikuja omadusi ja liikumise iseloomu, sh puudest tulenevad erisusi;
- liikumistee tunnuseid;
- miinimumnõudeid ja raskusastmeid;
- tunnuste omavahelist kombineerumist;
- miinimumnõudeid ja soovitatavaid nõudeid.

Kavandamine

Raja ehitamisel tuleb meeles pidada, et see võiks ergutada ka teisi meeli peale nägemise. Hea rada peab kõnetama erinevaid meeli, võimalik peab olema kive ning puid, tunda lilled ja marjade lõhnu ning maitseid, kuulda linnulaulu ning jooksva vee heli.

Liikumisteede kavandamisel on oluline arvestada nii looduse atraktiivsust kui looduskeskkonna taluvust (vt ka eespool). Takistustevabade liikumisteedega on võimalik hoida kõiki kasutajaid kasutuskoormuse ja häiringute suhtes tundlikuks looduspiirkondadest eemal ning juhtida nad puhekasutuseks sobivateesse piirkondadesse. Tasakaalustatud lahenduse saavutamiseks on vajalik maastikus puhevöimaluste ja teedevörgu planeerimine koos mõjude hindamise ja arvestamisega.
Lääbimõeldud kavandamine, korralik rajamine ja vajalikud investeeringud tagavad teede ja radade kvaliteedi ja vastupidavuse pikaks ajaks.

Soovitusi
Rajamisel on soovitatav eemaldada radadele liiga lähedal asuvad pindmise juurestikuga puud, kuna need lükkavad aja jooksul jalgtee pinnase juurtega üles ning rada muutub kõigile kasutajatele raskesti läbitavaks. Vältida tuleks ka seisva vee kogunemist ja lompide tekkimist.

Liikumisteede kavandamine ja rajamine peab olema keskkonnatingimusi arvestav, et vältida takistuste tekkimist. Eriti oluline on tee kandekihtide drenaaž ning sademevete ja liigvee asjakohane ärajuhtimine (vt ka eespool). Vastasel korral võib see saada teele saatuslikuks ja tee kasutajale oluliseks este-nägematuks takistuseks. Põhjalikult käsitletakse seda teemat Šoti juhendmaterjalides.[33]

Teekattematerjali valikul tuleb lähtuda sellest, et see sulanduks ümbritseva keskkonnaga. Teekate peab olema võimalikult tihe, tasane, libisemiskindel ning kulumis- ja ilmastikukindel. Ratastooli või lapsevankriga läbitavate teede ja radade pinnamaterjalidena ei ole soovitatav kasutada lahtist kruusa või liiva, ebatasast looduslikku kivi või munakivi. Samas on ratastoolile läbimatu puukoorehake väga hästi sobiv teatud kasutajagruppidele, näiteks tervissportlastele.

Üleminekuvorm loodusraja ning linnatänava vahel. Sellist miljööväärtuslikku piirkonnas paiknevaid liikumisteed ei ole mõistlik kõigile hästi läbitavaks ja aasta ringi hooldatavaks muuta. Juurdepääs on võimalik ristuvatelt tänavatelt.

Levald, A., Porvoo, 2009

Kivikattetega tee ei ole hästi läbitav ning vajab kergliiklusrada.
Levald, A., Nõva, 2003

Kaasava elukeskkonna juhendmaterjal 227 Liikumine & liikumisteed
Liikumisradade puhul võib lisaks linnatingimustes kasutamiseks sobivatele pinnakatenditele kasutada ka järgmisi materjale:

- klombitud looduskivi;
- tallamiskindel muru;
- vuugimuru (võib olla takistuseks ratastooli, ratastel abivahendi või lastekäruga liikujale);
- puit (võib muutuda märjaga libedaks);
- tihendatud peen paekillustik.

Liikumistee linnaväljakul läbib hea katendiga ja hästi piiratud.
Levald, A., Kuldiga, Läti, 2009

Tihendatud kruusakattega ja äärekividega piiritetud jõeäärne promenaad.
Levald, A., Grimma, Saksamaa, 2008
Hästi liigeldav ja piiritletud pargitee. Hästi liigeldav lilleaia parter, katendiks peen tihendatud killustik.

Levald, A., Katariinanpuisto, Kotka, 2009

Kõigile ligipääsetav maitseainete aed linnahoovis.

Levald, A., Dresden-Neustadt, 2003

Hästi liigeldav lilleaia parter, katendiks peen tihendatud killustik.

Levald, A., Kadriorg, Tallinn, 2005

Hästi liigeldav pargitee, mis võiks olla äärekividega tajutavamalt piiratud. Pandusel ja trepil puudub käsipuu.

Levald, A., Lepistiku park, Mustamäe, Tallinn, 2009
Kasutajale on abiks raja ning külgneva maapinna visuaalne eristamine. Liikumisteede ääristamine ääreavide või teiste materjalidega on asjakohane nii taktiilse teabe edastamiseks kui ka ohutuse ja hoolduse seisukohalt.

Madal piire muudab tee ka nägemispuudega inimesele tajutavaks, samuti on see abiks lumise perioodi saabumisel.

Levald, A., Kautokeino, Norra, 2002


Hästi maastikku sulandatud laudteel on laudade vahed liiga laiad.

Puuduvad suunavad madalad piirised.

Levald, A., Purciemi luited, Läti, 2010

Kaasava elukeskkonna juhendmaterjal 230 Liikumine & liikumisteed
Laudteede ning sildade äärekaitse peab olema vähemalt 7,5 cm kõrge. Äärekaitse töötab hästi ka valge kepi orientiirina.

Selline laudtee on ka ratastooliga läbitav, kuid iseseisvaks kasutamiseks kitsavöötu ja libisemist tõkestava ääriseta.

Levald, A., Kalajoki rand, Soome, 2002

Laudtee on piisavalt lai ja tasane, kuid puuduvate piirete tõttu ratastooliga kasutamiseks ohtlik.

Levald, A., Pääsküla raba, Nõmme, 2008

Selline laudtee on ka ratastooliga läbitav, kuid iseseisvaks kasutamiseks kitsavöötu ja libisemist tõkestava ääriseta.

Levald, A., Kalajoki rand, Soome, 2002

Lai laudtee rannas. Teel puudub väljasöitu takistav piire.

Levald, A., Läti, 2002
Laudtee on ka ratastooliga läbitav, kuid iseseisvaks kasutamiseks kitsavöitu ja libisemist tõkestava aäriseta. Levald, A., Pallastunturi, Soome, 2002

Vaaepaltvorm võimaldab ka lapsevankriga juurdepääsu, ratastoolile on ümarpuidu kasutamine probleemne. Levald, A., Läti, 2009


Kõigile kasutajagruppidele hästi ja turvaliselt läbitav laudtee möödumiskohaga. Levald, A., Heponkoski, Soome, 2002
Korraliku truubiga lahendamata veesoon võib olla ootamatu ja osale kasutajatest ületamatu liikumistakistuseks.

Hästi liigeldav rannapromenaad. Kergliiklustee laudkatetega sild Rocca al Mare ja Stroomi vahel.
Levald, A., Rocca al Mare, Tallinn, 2009

Kooldamata tee muutub libedaks ning halvasti käidavaks.
Levald, A., Värksa Sanatoorium, 2011

Kaasava elukeskkonna juhendmaterjal 233 Liikumine & liikumisteed
Tuleb kindlasti arvestada, et inimesed mahuksid üksteisest mööduma rajalt maha astumata. Lastekäru või ratastooli kasutajatele kohandatavate radade minimaalne laius on 1,5 m (vt ka eespool), kitsamatel teedel võib osutuda vajalikuks möödumiskohtade rajamine. Kasutajaid kestvalt kaasavate laudteede rajamisel tuleb eriti toonitada nende pideva hooldamise vajadust, nt tuleb välja vahetada katkised laudad, kuna muidu võivad need muutuda ratastoolis inimesele ületamatuks takistuseks või saada ohtlikuks.

**Hooldus**
Öigete materjalide valik ning korralik teostus liikumisteed rajamisel aitab kokku hoida hilisemaid hoolduskulusid. Liikumisteed pind peaks olema kõrge, valmis ja tasane, ilma löökaukude, juurte või esiletungivate kivideta. Kui näiteks maapinnas on lohk kohe rambi ees, siis võib selle tagajärjel tekkida järsk, ratastooliga halvasti ületatav kõrguste vahe.


Selleks tuleb määrata liikumisteede korrashoiu ja hooldamise eest vastutaja, tagada jätkusuutlikult vajalike vahendite olmasolu kogu rajatise elukäe jooksul ning teid regulaarselt kontrollida. Vajalik on personali koolitus takistustevaba liikumise tingimuste pidevaks hindamiseks ja tagamiseks.

**MÄNGUVÄLJAKUD**

Mänguväljak tuleks rajada võimalikult kaugel liiklussõidu. Lisaks tervislikule aspektile aitab see oluliselt vaenlase ja -kuuljatele orienteerumisel. Läbi mänguväljaku ei kulge üldkutsutatava teed, samas paigutatakse mänguväljak võimalikult jalakäijate põhiliste liikumisteede lähedale. Mänguväljaku omanikele (korteriühistud, lasteaiat jt) on koostatud mänguväljak kavandamiseks, ohutuse tagamiseks ja hooldamiseks põhjalikum juhend, kust leiab informatsiooni selle kohta, mida mänguväljaku omanik peaks arvestama.

---

Kaasava elukeskkonna juhendmaterjal 234 Liikumine & liikumisteed
MIN 900 mm
600 mm
900–1300 mm
ASFALT
LIUMÄGI
KÄDTEE KALLE MAX 8%


LIIVAKAST
KÄSIPUU

Trepi ülemine ning alumine aste kontrastvärvides. Käsipuud mõlemal pool. Astmete tõus MAX 150 mm.

PEHME LIIV
VALATUD TURVAALUS

KÄSIPUU

KIIKLOOMAD

1300 mm

Puud varjavad liivakasti tuulite eest. Väljaku materjaliks on tihendatud kivituhk.

1200 n.

MIN 900 mm
600 mm

Põösad takistavad kiikude turvaterritooriumi avatust põikteedele. Taimed ei tohi olla mürised ja peavad olema võimalusel allergiat mitte tekitavad.

KÄSIPUU

KIIGED

900 mm

Kõiki kaasava mänguväljaku põhimõtteline lahendus.


Kooskaasa elukeskkonna juhendmaterjal
Juhendi kohaselt ümbrisetakse turvaline mänguväljak piird-eaiga, kuid see ei ole avaliku mänguväljaku kavandamise tingimuseks. Värava laius peab olema vähemalt 90 cm, et sel-lest saaks läbi nii lapsevankri kui ratastooliga. Samuti ei tohi teel olla takistusi, mis raskendaks nende sissesõitu. Värava viimistlused peavad olema ümarad ja neil ei tohi esineda teravaid servi. Lukustusmehhanism ja käepide ei tohiks olla kõrgemal kui 85 cm.

Kui on paigaldatud isesulguv mehhanism, ei tohi selle sulgu- mise aeg olla lühem kui viis sekundit, et võimaldada sissepääs ka ratastooli kasutajatele ning mitte vigastada mänguvälja- kule sisenevaid lapsi. Kui värav on raske, tuleb kasutada meh- hanismi, mis automaatselt takistab selle kiiret sulgumist.

Juhul kui sissepääsudeks on pöördvärvad või muud nen-desarnased vahendid, tuleb esmalt hinnata, kas kiirabi- brigaadi või ratastooliga isikute sisenemine on võimaldatud. See on eriti oluline juhul, kui tegemist on ainsa sissepääsuga väljakule.

Pehmetest plaatidest aluskattega mänguväljak.
Levald, A., Kanuti park, Tallinn, 2011


Pehmetest plaatidest aluskattega mänguväljak.

Pukk, M., Brooklyn, New York. USA, 2009

Kaasava elukeskkonna juhendmaterjal

Tagada tuleb võimalikult mitmekülgne, ohutu ja maksimaalselt laste mänguvajadustele vastav mänguvahendite komplekt. Valides seadmeid mänguväljakule, tuleb meeles pidada, et lapsi on erinevaid.

Mänguväljaku inventarilemmendid peavad paiknema üksisteisest möödlikul kaugusel. Sobiv kahe elemendi vahe on 1,5 m, mis võimaldab vabalt liikuda ratastooli kasutades. Et võimaldada võrdne ligipääs kõigile, peab ala olema ühes tasapinnas ning korraliku drenaažiga. Mängualade juurde, mis nõuavad erinevat kõrgust, tuleb ette näha ramp, mille kalle ei ületa 60. Nägemispuudega laste tarbeks tuleb ratastooli kasutamiseks korralikult vaatamata päevavärviga, nt kollane.
Kiiged

Liumäed
Liumägi peaks olema 100 cm lai, et seda saaks koos lapsega kasutada teda saatav täiskasvanu. Liumäe alumine osa peab olema nii pikk, et hoog raugeb enne liumäelt eemaldumist. Suunav katend peaks võimaldama leida tee tagasi liumäe äärde.

Liivakastid
Et liivakastis saaks mängida ka ratastoolis laps, peab liivakasti olema kõrgendusega ning selle alla tuleb ette näha jalariaum 50 cm kõrguselt. Liivakasti üks serv võiks olla kõrgusega alla 40 cm, et ratastoolis laps saaks minna liivakasti. Liivakasti serv värvitakse kogu perimeetri ulatuses kontrastse värviga, et nägemispuudega kasutaja näeks seda.

Mängumajad
Kõiki kaasava mänguväljaku mängumajja peab pääsema ka ratastooliga.

Viidad ja sildid
Viidad ja sildid peaksid olema lihtsad ja kergelt äratundavad, soovitatavalt piltsümbolitena. Loetav kõrgus peaks jääma vahemikku 120–140 cm.

Taimed, lõhnad, päikeste- ja tuulevari
Hästi kujundatud maastik ja taimede ilu tagavad lastele suurema mängurõõmu. Istutada tuleks puid, mis tagaksid mänguväljaku kasutajatele varju ning pakksid visuaalset väärtust. Vältida tuleks mürgiseid, teravate okaste ja lehe- dega taimi, mida attraktiivsete viljadega ning allergilisi reaktsioone tekitavaid taimi.

Mänguväljakut planeerides tuleb meesid pidada, et lapsed kasutavad mängudeks ka ümbruskonna puid ja põõsait.

Mänguväljaku korrapärase ja loodusest ehitatud maastik tagab lastele tõhusat mängurõõmu. Istutada peavad mänguväljaku korrapärasest maastikust ja taimest, mis tagaksid mänguväljaku kasutajatele varju ning pakksid visuaalset väärtust. Vältida tuleks mürgiseid, teravate okaste ja lehe- dega taimi, mida attraktiivsete viljadega ning allergilisi reaktsioone tekitavaid taimi.

Kõige mõjusamad on asjakohased ja õigeaegsed selgitused.

Mõjused, mis tekkivad looduskonnas
Mürgised, teravad okaste ja lehe- dega taimid, mis toovad allergilisi reaktsioone, tuleb vältida. Taime- ja lõhnadpeatuse ehitamine tagab jõusõidu ja laste olemusest riigis.
Vandalism mänguväljakutel toimub eriti siis, kui läheduses ei ole teismelistele mõeldud ajaveetmise kohti. Seda tuleb arvestada terviklahenduste koostamisel, planeerides maa-ala mänguväljaku ümbruses ja püüdes leida lahenduse ka noorte kohtumispaigale. Vöimalik, et mõnikord piisab ülejäänud väljakust eraldatud mõne pingiga kohast või lihtsalt varjualusest, et vähendada noorte kiusatust kasutada ja lõhkuda mänguväljaku seadmeid.


Ohutuse tagamiseks tuleb mänguväljakuid dokumenteeritud korraldussüsteemiga ja riskianalüüsi alusel pidevalt kontrollida nii visuaalse tavaülevaatuse, töökindluse ülevaatuse kui ka korralse põhiülevaatuse käigus (EVS-EN 1176-7). Hooldamise ajakava ja ülevaatuse tulemuste alusel tuleb mänguväljak korrastada.

Pehmetest plaatidest alustatud mänguväljak.
Pukk, M., Brooklyn, New York, USA, 2009

Mitmekülgset kasutust võimaldav mänguvahend, millel võib ka istuda.
Pukk, M., Parc Diagonal Mar, Barcelona, Hispaania, 2006
KALMISTUD

Kalmistud on meie vananevas ühiskonnas üha olulisemad kohad. Varem paikse rahva suuri elukoha- ja eluviisimuutusi arvestades on kalmistikultuur tänapäeval muutuste keskel.

Kalmistud on avalikud rajatised, mille külastamine peab olema võimalik kõigile elanikegruppidele, sh vanuritele ja liikumis- ning meelepuudega inimestele. Vanurid moodustavad suurema osa meie kalmistute külastajatest ja seetõttu peavad kalmistud olema võimalikult takistustevabad.

Linnades on kalmistud rohelised oasid, mis pakuvad külastajatele rahustavat vaheldust igapäevasele tõtlikule elu- ja arengukultuursele tõttu.

Parklates peavad puudega inimeste parkimiskohad olema võimalikult kalmistu sissepääsude lähedal, võimaluse korral tuleks muuta mõned kalmistu peateed sõidetavaks.


Teede kavandamisel tuleb arvestada ratastoolis liikujate vajadusi, seega peab teede miinimumlaius olema 1,2 meetrit. Teed peavad olema võimalikult siledad, astmeteta, kõva ja tihedat katte ja sargakäru, lapsevankri, ratastooli ja rulaatoriga läbitavad. Teed võivad olla ka hästi tihendatud siirdematerjalist, kuid oluline on teede drenaaž, sademevete ärajuhtimine ning teede läbitavus iga ilmaga. Suureks abiks on teede ääristamine, teede valgustatus ning istumisvõimalused kvartalitevaheliste teede ääres.

5.10. Määrused ja standardid

   https://www.riigiteataja.ee/akt/226420?leiaKehtiv

2. EVS 843:2003 Linnatänavad

3. EVS-EN 13201-2:2007 Teevalgustus

4. EVS-EN 1176:2008

5. EVS-EN 1177:2008

6. Tallinna linna teevalgustusnormid, kinnitatud Tallinna Linnavalitsuse 24.03.2004 määrusega 26
   https://oigusaktid.tallinn.ee/?id=3001&aktid=9609
5.11. Huvitavat lugemist

   http://nullbarriere.de/barrierefrei-bauen-oenorm1600.htm
   http://www.graz.at/cms/beitrag/10027121/421952/
4. Barrierfreies Bauen in Berlin
   » Handbuch “Barrierfreies Planen und Bauen in Berlin” Herausg.: Senatsverwaltung für Stadtentwicklung, 2007
   » Barrier-Free Planning and Construction in Berlin Principles and Examples (engl.)
   » Handbuch “Design for all – Öffentlicher Freiraum Berlin” Herausg.: Senatsverwaltung für Stadtentwicklung, 2010
5. CELMA Guide on obtrusive light.
6. City of Toronto Accessibility Design Guidlines
   http://www.lumes.lu.se/database/alumni/06.08/thesis/Camille_Delepierre.pdf
8. Ein Leitfaden für die Gestaltung städtischer Freiräume. 3.5 Aspekt “Design for All”: Berücksichtigung der Bedürfnisse von Menschen mit Behinderungen und aller anderen Nutzergruppen.
9. Gehl, J. Cities for People. 2010
10. Getrennte Querungsstellen/Querungsstellen mit differenzierter Bordhöhe
    http://www.access-board.gov/prowac/guide/PROWGuide.htm
13. Projekti Helsingi kõigile materjalid
    http://www.hel.fi/hki/hkr/Helsinki+kaikile/K_sikirjasto+ja+julkaisut
14. Hästiteostatud graafiline materjal
15. Inclusive Design for Getting Outdoors
    http://www.idgo.ac.uk/about_idgo/index.htm
17. Lehari, K., Tee viib ja viitab. Koht ja paik. EKA toimetised 8, Tallinn, 2000, lk 44–52
    http://www.eki.ee/km/place/pdf/KP1_06lehari.pdf
    http://nullbarriere.de/leitfaden_unbehinderte_mobilitaet.htm

Kaasava elukeskkonna juhendmaterjal 243 Liikumine & liikumisteed


28. Planungsleitfaden für die barrierfreie Gestaltung von Wanderwegen. Institut für Verkehr und Raum der fachhochschule Erfurt. Freistaat Thüringen, 2005


32. Zugänglichkeitsplan für die Stadt Erfurt (Takistustevaba liikumise arengukava.
nawsecured1&u=0&file=fladmin/Material/Institut/Verkehr_Raum/Publikationen/zuganglichkeitsplan_v3.pdf& t=1310727421&hash=904d0b9516e3e179fc75be152136b169


34. Tallinna rohealade teemaplaneering, 2008 www.tallinn.ee/est/g6479642710

35. Terviserajad. Eesti Olümpiakomitee


37. Barjäärivaba planeerimist tutvustavaid materjale:
» http://nullbarriere.de/
» http://www.nullabsenkung.de/
http://nullbarriere.de/barrierefreie-stadt.htm

Kaasava elukeskkonna juhendmaterjal 244 Liikumine & liikumisteed
38. Thüringi ühistranspordi arendusprogramm, sh abivahendid takistustevaba liikumise hindamiseks 2010
http://www.thueringen.de/de/tmbtv/verkehr/foerderung/oepnv/content.html

www.ohutus.ee/public/.../Juhend_manguvaljaku_omanikule.pdf
www.rospa.com/playsafety

40. Unbehindert mobil
http://www.unbehindertmobil.de/veroeffentlichungen.html

41. Universal Accessibility for External Areas, Open Spaces & Green Spaces. HongKong

42. Universal Accessibility. Best Practices and Guidelines. HongKong
http://www.archsd.gov.hk/english/knowledge_sharing/ua/content.html


44. Ühistransport – Hispaania, Madrid/Barcelona; varustus, SIMPLEX tekstiedastus
http://www.emtmadrid.es/Home/Accesibilidad/Accesibilidad-en-el-autobus-[I].aspx

45. Žilaja sreda dlja invalida. Moskva Strojizdat, 1990

Kaasava elukeskkonna juhendmaterjal

Liikumine & liikumisteed

245
5.12. Bibliograafia

1. Nõuded liikumis-, nägemis- ja kuulmispuudega inimeste liikumisvõimaluste tagamiseks üldkasutatavates ehitistes. – Majandus- ja Kommunikatsiooniministeerium, määrus 28.11.2002 nr 14, 
   https://www.riigiteataja.ee/akt/226420

   http://www.communities.gov.uk/publications/planningandbuilding/ppg13
   (10.02.2012)


4. C. Delepierre, Slowing Down? Why Cities Should Decrease Car Speed And Why They Do Not. With Lund, Malmö And Lille Examples. – Lund University, 2008, 
   http://www.lumes.lu.se/database/alumni/06.08/thesis/Camille_Delepierre.pdf
   (10.02.2012)

5. Manual for Streets. – Chartered Institution of Highways and Transportation (CIHT), London, 2007, 
   http://www2.dft.gov.uk/pgr/sustainable/manforstreets/
   (10.02.2012)

6. K. Lehari, Tee viib ja viitab. – Koht ja Paik I. – EKA Toimetised, 2000, nr 8, lk. 44–52, 
   http://www.eki.ee/km/place/pdf/KP1_06lehari.pdf


8. Liiklusseadus, RT I 2010, 44, 261, 
   https://www.riigiteataja.ee/akt/13335732?leiaKehtiv

9. Maanteede projekteerimisnormid. – Teede- ja Sideminiteerium, 
   määrus 28.09.1999, nr 55, 
   https://www.riigiteataja.ee/aktiisa/0000/0076/3437/TSM_m_55_.pdf

10. EVS 843:2003, Linnatännavad, 

11. B. Kohaupt, Radwege im barrierefreien Verkehrssraum, 
    http://www.unbehindertmobil.de/radwege.html
    (10.02.2012)

12. Home Zones: Challenging the Future of Our Streets, 2005, 
    (10.02.2012)

13. Design Manual for Roads and Bridges. – Department for Transport, London, 
    (10.02.2012)

14. Guide Dogs, 
    http://www.guidedogs.org.uk/
    (10.02.2012)

15. I. Verhe, M. Ruti, Esteetön luontoliikunta. Helsinki: Suomen Invalidien Urheiluliitto ry, 2007, nr 93, 
    http://www.rakennustieto.fi/bin/get/id/5gv1OIZhk%3A5-100597?RANEget=/channels/public/www/rane/fi/index/tuotteet/kirjat/omatuotanto

    http://www.communities.gov.uk/publications/planningandbuilding/betterplaces
    (10.02.2012)

17. Inclusive mobility. A guide to best practice on access to pedestrian and transport infrastructure, 2005, 
    http://www.dft.gov.uk/publications/inclusive-mobility
    (10.02.2012)

18. U. Gnandenteich, Liikluskärk varjab jalakäijate eest foori. – Postimees, 
    26.10.2009, 
    http://www.tallinnapostimees.ee/179951/liikluskark-varjab-jalakajate-eest-foori/

Kaasava elukeskkonna juhendmaterjal 246


22. A. Levald, Tallinna haljastuse probleemid ja suundumused. – Inimmõju Tallinna keskkonnale III. –, 1996, lk 16–23,
6. Ühiskondlikud hooned

Kaasava disaini põhimõtted on tavajuhul projekteerimisel igati rakendatavad, kuivõrd nad pole kuidagi vastuolus ehitusprojektile esitatavate põhinõuetega, mille sätestab Ehitusseadus.\[2\] Selle seaduse kohaselt peab ehitusprojekt tagama kohandatava hoone vastavuse seadusandlusega sätestatud nõuetele, sh püsivuse, tuleohutuse, hügieenilisuse ja tervislikkuse (sh mürakaitse), keskkonnasõbralikkuse, kasutamisohutuse, energiasäästlikkuse ja ka vastavuse Tellija nõuetele. Hoone projekt hõlmab harilikult nii kohandatavat hoonet kui ka krunti, mis võimaldab projekteerimise käigus läbivalt rakendada kaasava disaini põhimõtteid.

Üldjuhul sisaldab projekt järgmisi osi:

- arhitektuur
  - AR – arhitektuur;
  - SA – sisearhitektuur;
- konstruktsiooni osa
  - AS – asendiplaan; tuleohutus;
- eriosad
  - KV – küte- ja ventilatsioon + jahutus ja soojusvarustus;
  - VK – veevarustus- ja kanalisatsioon;
  - E – elektripaigaldis (tugevvool, nõrkvool, automaatika);
  - G – gaasivarustus.
Seega on peaprojekteerijal nii õigus kui ka kohustus jälgida, et kaasava disaini põhimõtteid arvestatakse kogu territooriumi ulatuses, alates krundile pääsust (värv, postkastid jms), haljastusest ja heakorrast (jäätmekäätlus) kuni hoonesiseste ruumilahendusteni (sh detailid, nt lükustussüsteemid jne).

Hoone projektdokumentatsiooni koosseisus ja projekteerimise-tappe reguleeriv standard kirjeldab hoone ehitusprojekti ja selle üksikute osade ning staadiumide soovituskiriku mahtu, mis jätab peaprojekteerijale hea võimaluse integreerida kaasava disaini põhimõtted terviklahendusse. See ei tähenda projekteerijale ilmtingimata suuremat töömahtu, vaid tähelepanu osutamist kaasava disaini põhimõtetele asendiplaanili-sest lahendusest kuni eriosade sõlmede ja detailsete tehniliste lahendusteni.


Üldkasutatava hoonenõtu saab avalikkusele pakkuda:

- side-, liiklus- või parkimisteenuseid;
- kunsti- või teisi kultuuriteenuseid;
- spordi-, liikumis-, hobi-, puhkuse- või muid samaväärseid teenuseid;
- kaubandusteenuseid;
- panga-, majutus- või toitlustusteesteenust.

Avalikeks hooneteks on ka haiglad, tervishoiu- või hooleasutused või nende asutuste oote-, vastuvõtu- ja külastusruumid, õppeasutused, kogunemiskohad või -ruumid ja üldkasutatavad rajatised.

Kaasava disaini seisukohalt ei pöörata tähelepanu mitte ainult sellele, et ruumid oleksid sihtgrupile (köigile) kättesaadavad ja hoone tervikuna ligipääsetav, vaid et ka tees used oleksid reaalsuses sihtgrupile (köigile) kättesaadavad.
**Sissepääsud**

Sissepääsude ja liikumisteede puhul tuleb kindlasti silmas pidada, et peasissepääs oleks projekteeritud ja ehitatud nii, et see oleks mõeldud kõikidele hoonet kasutavatele inimestele – pole vaja eraldi sissepääsu erivajadusega kasutajale, vaid kõik külastajad peaksid saama kasutada sama sissepääsu.

- **Sissepääs peab olema lihtne ja loogiline ka lapsevankriga liikujale – uste avanemisel tuleb arvestada, et vankri lükkamine nõuab mõlemat kätt.**

- **Sissepääsude kohale tuleb – meie ilmastikutingimusi silmas pidades – ette näha varikatus, mis algab kõrgusest 2750 mm, kuigi 3555 mm on vajalik päästesõidukitele ja 2895 mm inva-abiks kohandatud minibussidele.**

---

![Eero ruumivajadus uksest sisenemisel.](image1)

![Liftiähta töstuk ja välstrepp varikatuse all.](image2)
• Hoone sissepääsutasandini peab olema tagatud astmeteta tõus pandusega või tõstukiga. Sisenemisala peab olema ühtlaselt ja hästi valgustatud ning üldjuhul katusega kaetud.

• Hoone sissepääsu esine pind peab olema horisontaalne ning avatud ukse korral vaba ruumiga 1500 × 1500 mm nii liikumisabivahendiga pööramiseks kui ukse avamiseks.

• Tuulekoja sügavus avatud uste vahel peab olema vähemalt 1500 mm – soovituslikult 2135 mm – ja laius ühesuunalisel liikumisel 1200 mm.

• Jalarestid ei tohi põhjustada ratastooli rataste, keppide ega karkude takerdumist. Võimaluse korral kasutada ruudu- või rombikujulise seotisega reste. Mida tihedam rest, seda paremini läbitav.

• Sissepääsud fuajeesse või vestibüüli peavad olema piisavalt avarad, nii et seal oleks lisaks ratastooli, lapsevankri või hoiuruumile puhke- ja ootevõimalusi ka saatjale.

• Jalapuhastusmattide puhul jälgida nende harjaste pikkust ja materjali: mida pikemad harjased, seda raskemini läbitavad.

• 20 mm või kõrgemad lävepakud on probleemiks praktiliselt kõikidele erivajadustega kasutajatele. Ka uksepiidad tuleb võimaluse korral süvistada, kuna nad võivad liikumist takistada.

• Parema nähtavuse tagab seinapinnaga kontrastses toonis uksepiit.
Sissepääsude juures paiknevad trepikäsipuud peavad asetsema mõlemal pool. Eakatele on abiks ka käsipuu koridori seinal.

Majajuht ja infolaud (administraator) peaksid paiknema võimalikult sissepääsu lähedal. Peasissepääsu juures peaks olema kõigile ligipääsetav ja mugavalt kasutatav telefoniühenduse võimalus, et vajadusel abi kutsuda jmt.

Rohke kasutusega koridoride jt kulglate laius peaks olema min 1100 mm, pöördekohtades diameetriga 1600 m – viimased on ühtlasi puhkekohad ratastoolis liikujale, seega peaksid nad paiknema minimaalselt iga 20 m tagant.

Kus ratastool, käru või muu vahend on kõrvuti saatjaga, on vaba käigutee laius 1200 mm. Kus kaks ratastooli, käru või vankrit peavad teineteisest mööda pääsema, peab käigutee vaba laius olema vähemalt 1675 mm. Turvaväravate minimaalne vaba läbipääsulaius peab olema 900 mm. Mööbel, inventar, valgustus ja muu atribuutika ei tohi paikneda liikumisteel ega takistada ligipääsetavust.

Uksed ja tähistus
Parimaks lahenduseks on automaatsed liug- või kahele poole lahti käivad lükanduksed, kus fotosilm on reguleeritud ka nii lapsi kui ka ratastoolis istujad tuvastama. Liiga aeglaselt avanevate automaatsete uste puhul võib ratastoolis liiklejal jalg uksele ette jääda. Pendel- ja pöörduste kasutamine ratastoolikasutaja liikumistega on keelatud. Selline sissepääs peab olema dubleeritud 900 mm laiuse tava- ja dekoratiivse väravades.

Uksed peavad üldjuhul olema lävepakuideta. Kui teatud ehituslikud nõuded nõuavad lävepaku olemasolu, siis selle kõrgus ei tohi olla üle 20 mm.

Ukseklaasid peavad olema ohutud, vältimaks purunemisel ohtlikke suuri klaasikilde. Täisklaasuksi võib ette näha ainult koos automaatavajatega.

Täisklaasukset ja suured klaaspinnad peavad olema silmapiistvalt markeeritud – märgistus peaks paiknema silmade kõrgusel, nt hea tava kohaselt 1500 mm kõrgusel pörandast.

Uksed peavad avanema ja sulguma kergelt või automaatselt. Käsitsi avatat ust peab saama avada kergelt ühe käega. Uste avamisel ei peaks olema vaja rakendada jõudu üle 20 N (2,04 kg).
• Uste automaatse avanemise nupud ja kaardilugejad peavad olema põrandapinnast 850 mm kõrgusel (Kanada normi järgi 1000–1100 mm) ja ukseavast vähemalt 1500 mm (Kanada normi kohaselt 1200 mm) kaugusel.

• Uksed peavad avanema evakuatsiooni suunas, avanemine vähemalt 90°.

• Ukse vaba käigulaius (ukse piida valendlaius, kahe poolega ukse käigupoolne valendlaius ning lükand-ja liugukse valendlaius) peab olema vähemalt 800 mm, ukse vaba kõrgus vähemalt 2100 mm.

• Hoone vähemalt poolte sissepääsude ukse laius ja vaba käigutee peab olema min 915 mm.

• Koridori otsauks tuleb nihutada teljelt võimalikult kõrvale. Koridori külgeinas olev uks peab olema otsaseinast vähemalt 600 mm kaugusel.

• Fotoelemendi abil või tellitult avaneva ukse ees peab olema ohutuse tagamiseks küllaldaselt vaba ruumi. Tellitult avanevate uste lahtiolek peab olema küllaldase ajavaruga või tellimisel reguleeritav.

Eero ruumivajadus uste kasutamisel.
• Käsitsi avatava tiibukse ees ja taga peab olema vajalik vaba ruum.

• Ukse enda järel sulgemiseks peab selle siseküljel olema käsipuu või käepide, mis asub põrandast 900–1100 mm kõrgusel. Käsipuu või käepide tuleb kinnitada ukse hingedepoolsest servast 200 mm kaugusele.

• Ukseluku ja lingi kõrgus põrandast peab olema vahemikus 760 mm ja 1065 mm. Kaldtee suunas avanevate uste puhul tuleb jälgida, et vahemad oleks ratastooli jaoks ruumi. Ukse piirdeluad või ukselehe äared tuleb värvida ukselehest erinevas ja eredas toonis.

• Avalikes hoonetes (nt õppeasutused), kus seintes on palju uksi, tuleb tähelepanu pöörata nende märgistusele, nii et oleks tagatud vajalik kontrastsus.

• Uksenumbrid ei pea ilmtingimata olema Braille’ kirjas, kuid võiksid olla suured ja kontrastsed ja ka kergelt reljeefsed, nii et käega katsudes on number arusaadav.

• Evakuatsiooniteel paiknev vm automaatse turvalukustusega uks peab olema varustatud hädaabinupu või helistamisvõimalusega, mis on ligipääsetav ja hõlpsalt kasutatav.

![Pandused](http://example.com/pandused.png)

_Pandused_

Pandus on kaldtee, mida kasutatakse ühendusteena eri tasa-pindade vahel, sealhulgas hoonetesse pääsemiseks.

• Kaldteede mõõdud ja kattematerjal peavad võimaldama selle hooldust talvisel ajal – pandus ei tohi muutuda libedaks, samas ei tohi ka olla üleliia krobeline.

• Sissepääsude juures tuleb vältida metallist lävepakke, mis võivad muutuda libedaks ja seeläbi ohtlikus.

• Ühesuunalist liiklusega panduse minimaalne laius on 1,0 m, ühesuunalistel 1,8 m.

• Keerdpanduse laiused on samad, ent täispöörde puhul ei tohi laius olla alla 3,0 m. Pandused ei tohi mitte mingil juhul olla kahekaldelised ja ka kergelt reljeefsed. Panduse pikikalde puhul kuni 5% (1:20) ei ole vahetasandeid (puhkemademeid) vaja.

• Käsipuud on vajalikud sisseruumides mõlemal pool ning väljas juhul, kui panduse pealispinna kõrgus erineb ümbruse tasapinnast. Pandus peab olema piiratud vähemalt 70 mm kõrguse äärisega.
Panduses kaldega 1:20 eht 5% ja 1:12,5 eht 8%, vahemate. Pikiprofilid käsipuuga, mõõdud. Põikikalle pole pandustel lubatud.
• Kui panduse pikikalle on kuni 6%, on sirgpaanduse puhul vajalik vähemalt 1,5 m (soovitatav 2,0 m) pikkune ja keerdpanduse puhul vähemalt 2,0 m (soovitatav 2,5 m) pikkune puhkemade kõrgustel kuni 480 mm, 960 mm jne iga kuni 6,0 m pikkuse (projektsioonis) teelõigu järel.

• Keerdpanduse mademe pikkus mõõdetakse siseküljelt. Käsipuud peavad jätkuma katkematu panduse mõlemal poolel ka puhkemademetel nii siseruumides kui väljas.

• Panduse pikikalle võib olla kuni 6%, järsema kaldega pandus on üldjuhul keelatud. Rekonstrukeeritavate ja restaureeritavate hoonete puhul võib panduse kalle erandjuhtudel olla 8–10%, kui teisiti ei ole võimalik ehitist kohaldada ligipääsetavaks ka vaegliiklejale.

• Trepi või järsakuga külje pandus tuleb neist eraldada alumise käsipuuulatuva tihedalt võrki- või võrkpiirdega.

• Panduse kohal peab olema vaba kõrgust 2,3 m. Pandus peab olema kõva ja kareda pealispinnaga, mis märgudes ei tohi muutuda libedaks.

• Nii siseruumides kui ka väljas peab pandus värvitoonilt erinema tasapinnaliste teesest.

• Kaldtee peab olema mõõdus; ta ei tohi olla libe, samas mitte krobeline, käsipuu peab olema kahel tasapinnal 600(–800) mm ja 900(–1100) mm.

**Liftid**

Lifti ukse ees peab olema vaba ruumi vähemalt 1500 × 1500 mm ja 2× liftikabiini sügavus, kui liftid paiknevad vastakuti. Liftikabiini ukseava peab olema 900 mm.

Liftikabiini sisemõõdud A – laius ja B – sügavus:

**Sõidulift:**
- A × B vähemalt 1100 mm × 1400 mm; 8 inimest, nominaalkaal 630 kg
- A × B vähemalt 1350 mm × 1400 mm;* 10 inimest, nominaalkaal 800 kg
- A × B vähemalt 1600 mm × 1400 mm;* 13 inimest, nominaalkaal 1000 kg.

**Kaupluseküljelastajate ja kauba lift:**
- A × B vähemalt 1100 mm × 2100 mm;* nominaalkaal 1000 kg.

*Soovitav ratastooli pööramisvõimaluse pärast
Invalift (püstlift):

- A × B vähemalt 900 mm × 1400 mm;
- A × B vähemalt 1400 mm × 1400 mm, kui käiguavad paiknevad kõrvuti korrustasenud seintes. Lifti seiskumistäpsus peab olema ±20 mm, soovitav ±5–10 mm – lift peab avanevama võimalikult samas tasapinnas korruse põrandaga.
- Lifti kutsungi- ja juhtimisnupud peavad paiknema vertikaaltasapinnas lifti kabiini põrandast 900–1200 mm kõrgusel. Vähemalt üks hoone liftidest peaks olema Platvormiga 1725 mm × 2285 mm (kanderaami kasutamise võimalus hoonetes, kus on seda vaja ette näha).
- Järjest levinumaks hakkab muutuma liftide varustamine korrustes häälteavitusega.

Öigel kõrgusel liftinuppe on ka Eerol mugav vajutada.

**Eskalaatorid ja trepironijad**

Eskalaator ei lahenda kõigi jaoks probleemi korrustes liikumiseks – lisaks käsipuudega varustatud trepile ja eskalaatorile tuleb täiendavalt ette näha lift (või tööst). Liftini jõudmine peab toimuma sujuvalt tänavatapinnas, nii et liikumist ei takista põrandate kõrguste erinevused ega lävepaku. Invanõuetele vastav lift peab olema kasutatav ilma spetsiaalse administratoori või turvatöötaja kutsumiseta.
Kui astme esiservad on kontrastselt erksavärvilised, on ka Elvil julgem trepist alla tulla. Ei valge kepi ega koeraga liikudes ei taju Kristiina trepi olemasolu ning võib pea valusasti ära lüüa.

Visuaalne kontrast

Ala, mida tuleks piirata

Kaasava elukeskkonna juhendmaterjal

Ühiskondlikud hooned
• Trepironija vajab orienteeruvalt 1,7 m laiust ruumi ja ratastooli jaoks 1,7 m raadiust, kusjuures täpsed mõõdud olenevad konkreetsest trepironijast

**Trepid**

• Ühel tõusul ei tohi trepiastmeid olla vähem kui kolm. Kuni kolme trepiastmega tõusul peab trepiastmete pind värvitoonilt erineda kasutades või trepi esimene ja viimane aste olema markeeritud 50–80 mm laiuste optiliselt kontrastsete võõridega astme kogupikkuses.

• Siseruumide treppide ja kaetud välistreppide trepiastme vähim sügavus on 300 mm ja suurim kõrgus 160 mm, lahtisel vastavasti 400 mm ja 130 mm.

• Trepiastmed peavad olema kinnised, ninadeta, tasased ja kareda pealispinnaga ning trepi avatud küljelt 2 cm kõrguste põskedega, vältimaks jala, kepi või kargu libisemist külgsuunas.

• Eelistada tuleb täisnurkse profiliga astmeid.

• Ühe korrusekõrguse vahel soovitatakse vaid üht trepimadet. Trepimademe kohal peab olema vaba kõrgust vähemalt 2,3 m.

• Treppide puhul on oluline, et trepiastmed, -tõusud ja -mademed on igal jooksul samade mõõtmetega – eriti oluline on astmete kõrguse täpse samasuse järgimine, et vältida komistamist.

• Vaegnägijate jaoks tuleb trepiäärde viimistleda kollases värvitoonis – trepid nõuavad kontrastsust, et trepiastmed oleksid eristatavad.

• Kaubanduskeskustes jt ühiskondlikes hoonetes tuleks treppide ette paigutada taktiilsed hoiatusribad (plaadid); võimalusel näha ette ka taktiilsete juhtliistude kasutamine.

• Karedamast materjalist (materjal, mille puhul inimene tunnetab jalaga trepi serva) trepiäär, mis takistab libisemist, on mugav igaühele, eeskätt vanemale inimesele.

• Katkematult ka trepimademel jättuv käsipuu on vajalik nii siseruumides paiknevate treppide kui ka välistreppide mõlemal poolel.

• Trep käsipuu peab olema trepi pikkune mõlemal pool treippi, mis annab valikuvõimaluse liikuda inimvööndu suunas (mitte takistada teisi vastuvoolu liikudes).
• Käsipuud peavad kindlasti olema kahel kõrgusel – 600(–800) mm ja 900(–1100) mm (Eestis kehtiva normi kohaselt peab käsipuu kõrgus astme keskelt olema 900 mm, lastele mõeldud käsipuu kõrgus 600–700 mm).

• Käsipuu vaba kaugus võimalikust seinast või kinnisest piirdest on vähemalt 45 mm.

• Trepivõre/barjääri pulkade maksimaalne vahekaugus on 110 mm.

• Käsipuu peab ulatuma mõlemas suunas üle panduse kaldeosa ning üle trepi esimese ja viimase astme tõusu vähemalt 400–500 mm.

• Käsipuu otsad peavad olema takerdumise vältimiseks painutatud allapoole ja kinnitatud kas põranda külge või ühendatud madalamal asuva käsipuuga.

• Käsipuu peab olema ümara või ristkülikukujulise profiiliga; ümarprofili läbimõõt 30–40 mm ja ristkülikukujulise profiili paksus 25–30 mm ning soovitav ümbermõõt 120–180 mm.

**Valgustus**

• Valgustuse projekteerimisel tuleb arvestada kohtvalgustite vajadust erinevate tasapindade valgustamiseks, töölaudadel ja kohtadel on lisaks vajalik kohtvalgusti.

• Vältida tuleb ülevalgustamist ehk räiget valgustust, mis väsitab silma; kasutada võimaluse korral peegelduvat valgust, samas vältida üleliia kontrastseid või pimestavaid peegeldusi.

• Töökeskkonnas kasutada erinevaid valgusallikaid töö- ja puhketsoonis, mis võimaldab luua teistsuguse meeleolus. Kasutada tuleks päevavalgusele võimalikult sarnast valgussoojusspektrit (soe spekter väsitab).

• Valgustuse projekteerimisel tuleb eelistada loomulikku päevavalgust.
Vastavalt Eestis kehtivale valgustusstandardile EVS-EN 12464-1:2003 “Valgus ja valgustus, Töökohavelgustus” on:

- koolide klassiruumides valgustusheduse normiks 300 lx tööpinnal (laua kõrgus, millel on nägemisülesande sooritamiseks vajalik töövähend, punkt 6.2.1, lk 36);
- täiskasvanutele on kehtestatud vastavaks valgustusheduse normiks 500 lx tööpinnal (p. 6.2.2).


- Vajaduse korral tuleb töökoha valgustust suurendada vastavalt töötaja eale või terviseseisundile.
- Treppide, panduste, astmete ja eskalaatorite servad peavad olema külaldiastelt valgustatud, et võimaldada nende ohutu kasutus.
- Evakuatsioonivalgustuse piirnorm on käiguteel 100 lx, mujal 50 lx.
- Infoviitade, hädaabitelefonide, teeninduspindade jmt valgustus ei tohi olla alla 200 lx.
- Reisijaamades peab ooteplatvormi valgustus olema min 100 lx.
- Evakuatsiooniplaanide ja muu hädaabi-info valgustus peab jälgima hoonete tuleohutus- ja turvanõudeid.
- Päevavalgus peab kaasa aitama ruumide sujuvale ja mugavale kasutamisele – nii nagu kunstvalgusegi puhul, vältida ülieliia kontrastseid ja silmipimestavaid peegeldusi.

**Aknad**

- Aknad peaksid paiknema sellisel kõrgusel, et neist ka istudes välja näeb – aknalaua max kõrgus 760 mm.
- Akende avamiseks vajalikud lingid jt mehhanismid ei tohi paikneda kõrgemal kui 1065 mm.
Akustika
Tähelepanu tuleb pöörata ruumide akustikale, et need ei oleks lärmakad – juhul kui vaegnägijal reljeefset orientiiri ei ole, kaotab lüüge müra tema jaoks ainsagi võimaluse – audioorientiiri. Arhitektuurses lahenduses kasutada müra vähendamise võtteid ja audioinfot võimalikult vähe moonutavaid lahendusi (nt vööd kipuvad helilaineid levikut moonutama).

- Siseruumis kasutada akustilisi siseviimistlusmaterjale, nagu akustilised laed, seinapaneelid, tekstiilid.

- Koosolekuruumides ei tohi valgustuse timmer* -lülitus segada raadiolaineid (kuuldeaparaadite toimimist).

- Kõlarite ette ei tohi paigutada heli levikut takistavaid seadmeid ega mööblit.

Kõrandad

- Põrandakatte klassifkatsioon vastavalt DIN 51097:
  - A nurk kuni 12°;
  - B nurk kuni 18°;
  - C nurk kuni 24°.

Vaegnägijat aitab ruumis orienteeruda maas olev liist, mis annab märkju teedehargnemise või ukse asukohast. Liist peaks viima ka infopunkti juurde, kust saab abi küsida. Liist peab asetsema maas nii, et vaegnägija või pime ei saaks pihta koridori avanevate ustega ega komistaks nendele.

Madalad orientiiiri liistud põrandal, mida tunnetab nii jalatalla kui valge kepiga, ei takista ka ratastooli. Põrandate hooldusel tuleb kasutada seltsiseid vahendeid ja metoodikat, et need ei halvendaks pindade edasist kasutamist eri sihtrühmade poolt (vahad jt hooldusvahendid ei muudaks pindu libedaks, üleliia peegeldavaks jne).

*Reguleeritava valgustusevusega lüliti (timmer) tekitab liigse elektromagnetvaljaga, mis kirgub edasi ka elektrijuhtmetelt ja lambilt.
Sisustus

- Püsimööbli, sisseseade, aparatuuri vms kättesaadavus ja sellest möödumine planeeritakse vastavalt pinnavajadusele liikumiseks siseruumides ja hoonisesisel liikumisteeel.

- Joogiautomaadid ja joogiveekraanid, mis on mõeldud kõigile kasutamiseks, peavad paikanema ligipääsetavas asukohas ja olema sobival kõrgusel, mis arvestab nii laste, eakate kui ka ratastoolis liikujatega.

- Ooteruumide istmed on tihti liiga madalad – eakatele sobivad kõrgemad istmed.

- Ooteruumide lauad ei tohi paikneda madalamal kui 510 mm ega kõrgemal kui 785 mm, muud lauad ja töötasapinnad (kohvikus jm) jätavad jalгадele ruumi min 700 mm (kõrgus) × 760 mm (laius tugede vahel) × 250 mm (sügavus).

- 5–10% hoiukappidest peavad paikanema kõrguse vahemikus 460 mm kuni 1220 mm, mugavaks kasutamiseks soovitatavalt kõrgusel 915–1065 mm.

- Pagasi alused (nt reisipagasi nn karussellid) ei tohi paikneda kõrgemal kui 460 mm.

- Peeglid peavad algama kõige rohkem 900 mm kõrgusel pörandast, alternatiivina võib kasutada kaldpeeglit. Soovituslik peegli paiknemise kõrgus on vahemikus 600 mm kuni 1850 mm, mille ees ruumi 900 mm × 1400 mm.

- Hooneautomaatika lülitid (valgustus, hädaabi, termostaadid jne) ei tohi paikneda kõrgemal kui 1200 mm. Näiteks ka elektripistikud ja võrgukaabli pesad peavad olema kättesaadavad ratastoolis olevale inimesele.

Sisekliima, küte, jahutus ja ventilatsioon
Sisekliima hõlmab õhku ja suuremaid õhukeskkonna näitajaid. Hea sisekliima vähendab haigusi, tagab mugavustunde ja soodustab tööjõudlust. Sisekliima määravad järgmised tegurid:
- õhutemperatuur;
- kiirguspindade temperatuur;
- õhu suhteline niiskus;
- õhu liikumise kiirus;
- õhu puhtus;
- müratase ja valgustatus.
- Mõju avaldavad ka näiteks inimese liikumise aktiivsus, riietus, sugu ja vanus.

Kaasava elukeskkonna juhendmaterjal 265 Õhiskondlikud hooned
Olemasolevate hoonete sisekliima on vastavalt hoonete energiatõhususe lähteparametreite määramise standardile (EVS-EN 15251:2007) jagatud 4 klassi. Hoonete projekteerimisel, ehitamisel ja rekonstrueerimisel tuleks olenevalt lähtekliimandasest lähtuda standardi esimesest või teisest sisekliima klassist. Esimene sisekliima klass on soovitatav ruumides, kus viibivad väga tundlikud, nõrga tervisega ja erinõuega inimesed, nagu puudega inimesed, haiged, väga väikesed lapsed ning eakad inimesed. Kvaliteetne sisekliima on väga oluline allergikutele, see loob eelduseks normaalseks eluolus.

Soovituslik sisetemperatuuri vahemiku leidmisel on võimalik lähtuda erinevatest standarditest ja määrustest. Eluruumidele esitatava nõuet (VV määrus nr 38) kohaselt peab õhutemperatuur eluruumis olema optimaalne, looma inimesele hubase soojatunde ning aitama kaasa tervisliku ja nõue-tekimisele ja kvaliteedile.


Vastavalt Eestis eluruumidele esitatavatele nõuetele (VV määrus nr 38) peab eluruumides olema loomulik või mehaaniline ventilatsioon, mis tagab inimse elutegevuse vajaliku õhuvoolulahut ja selle ringluse. Siseõhu üldtunnistatud CO₂ piirnorm on 1000 ppm.

Inimeste hinnangut sisekliima kvaliteedile mõjutab ka õhu liikumise kiirus ruumis. Talveperioodil tekib liiga suur õhukiirus tuuletömmet, seevastu suvel aitab suurem kiirus mugavustunnet parandada. Külmal aastajal on lubatud õhu liikumise kiiruseks kuni 0,21 m/s (projekteerimiskriteeriumi CR 1752 C-tase).

Siseõhu kvaliteedi tagamiseks tuleb projekteerida mehaaniline sissepuhke-väljatõmbe ventilatsioon. Õhuvahetuse määr peaks olema vähemalt 10 l/s inimese kohta. Müratasemel vähendamiseks tuleb seadmet ja ventilatsioonistritak akustiliselt isoleerida. Häädolukorra puhuks ette nähtud kogunemiskohtade ventilatsioon peab olema tagatud ka siis, kui muud hooneautomaatika süsteemid ei tööta.
Olemasolevate hoonete puhul puututakse tihti kokku seenkajjustusega, mis võib elanikul või hoone kasutajal põhjustada tõsisid tervisekajjustusi. Suurbritannias on seadusega ette nähtud hoonete ülevaatus seenkajjustuste osas enne kinnisvara ostu-müügitehingu sõlmimist (vajaduse korral ekspertiis fiberoptilise boreskoobiga). Oluline on jälgida ka niisikutelaik hoones ning kindlasti katuse olukorda ja seda, kuhu on jooksnud vihmavesi.

Uute hoonete puhul on võimalik seenkahjustusi vältida nii, et hoone konstruktsioonis puuduvad külmasillad ja välispiiridel (seinad, vundament, katus, avatäited) on piisav U-väärtus (seene levik algab +12°C). Hallituse tekkimine on lisaks konstruktiivsetele külmasildadele seotud ka korterite sisetemperatuuriga ja õhuniiskusega – on vaja jälgi, et küttesüsteemid on tasakaalustatud ja ruumide piisav õhuvahetus tagatud.

Viimastel aastatel on Eesti elamufondi rekonstrueerimisel sageli kokku puututud akende vahetamisest tingitud kompaktisoonidega.

Akende vahetamine võib kaasa tuua hallituse tekkimise kahel põhjusel:

- Tihedate akende poolt piiratud õhuvahetus toob kaasa niisikutelaseme tõusu, mis lakmuspaberina toob hallituse näol välja konstruktiivsed külmasillad.


Avalikud tualetid

Kui ühiskasutatavate ruumide juurde kuuluvad ühiskasutatavad tualettruumid, siis planeeritakse nad piisavalt ruumikaks. Lapsekäruga minnes vajame kindlasti tavapärasest avaramat tualetti. Juhul, kui tualeti avamiseks on vaja võtit, peaks võti olema kättesaadav võimalikult tualetile lähedal.

Ehitamisel võetakse aluseks ruumide kasutatavus keppi, karke või käetugesid kasutavatele liikumispuudega isikutele ning nii iseseisvalt liikuvaile ja tegutsevale kui ka abistajaga ratastoolikasutajale.

- Kabiini dimensioneerimisel tuleb arvestada ratastooli pöörderaadiaegu – 1400 mm. Ratastooli jaoks peab vaba ruumi laius olema vähemalt 800 mm.
• Sissepääs tualetti planeeritakse vahetult koridorist, kogunemissaalist või mõnest teisest samalaadset ruumist.

• Klosetipoti kõrgus pörandast prill-laual loispinnani peab olema 500–520 mm.

• Loputusvee tõmbamise seade peab toimima fotoelemendi abil või vähesel käte jõul (ka nn pikk kang). Loputusvett peab saama tõmmata kas labakäega või käsivarregu nii, et klosetipoti kasutaja ei pea selleks asendit muutma.

• Klosetipotil olles peab saama kasutada painduva varrega termostaatilist käsidušši.

• Klosetipoti kasutamist hõlbustavate käsitööde vähekaugus peab olema vähemalt 600 mm ning pörandast käsitöö ülemise servani maksimaalselt 800 mm. Nende tööpõll ja reguleerimisel rakendatav jõud tohib olla maksimaalselt 1 kN.

• Paberirulli hoidja peab olema käe ulatuses, näiteks ühe käsitöö käes, mis võtab vastu 1 kN. Tugete kinnitus ei tohi segada abivajaja aitamist.

• Kraanikauss peab olema mõõtmetega 550 mm × 400 mm, kõrgus pörandast 800 mm, kraanikausi tagumise ääre kaugus tagaseinast 200 mm ja soovitavalt ka külge seinast 200 mm nõnda, et kraanikausi alla jääks vähemalt 300 mm sügavune ja vähemalt 670 mm kõrgune ruum põlvedele.

• Klosetipoti esiservast 100 mm tahapoole lae alla tuleb ette näha terastast ja selle liigutatavad trapetsid, mis peavad võtma vastu koormist 1 kN.

• 600 mm pikkune rõhtkäsipuu seinal peab olema 800 mm kõrgusel, käsipuu keskpunkts võetakse klosetipoti esiserv. Rõhtkäsipuu soovitatakse dubleerida vertikaalkäsipuuaga.

• Kraani segisti veehulga reguleerimine peab toimima fotoelemendi abil või vähesel käte jõul kergesti ja ühe liigutusega toimiva käsikoova abil, näiteks pikk kang.

• Vee temperatuuri reguleeritakse termostaadi või pressostaadiga**.

*Termostaat – temperatuurilülitiga kraadiklaas
**Pressostaat – rõhulülitit
• Põlvedele vajaliku ruumi tagamiseks soovitatakse vesilukuta kraanikauses ja kanalisatsioonina (kraanikausi tagaseina lähedal asuvat) põrandatrapki.

• Haisulukk ei tohi jalgadele ette jääda ning kuumaveetorud ei tohi kasutajat põletada.

• Uksed peavad avanema väljapoole ja olema ühe käega kergega kergesti avatavad. Ust peab saama seestpoolt lukustada ja häda korral väljastpoolt avada.

• Käepide peab olema ukse hingedepoolses servas, sellest ca 200 mm kaugusel, sobival körgusel, haardeulatuses. Kabiinide ustel peab olema mõlemal pool sellekohane märgistus, kummal pool on ruum ratastooli jaoks (klosetipoti poolt vaadatuna).

• Ehitises, kus on olemas valvepunkt või -keskus, tuleks kasutada lisaseadmetena valvepunktiga ühendatud häiresignalisatsiooni (häirekella nupud peavad olema käsitsi kasutatavad nii pörandalt kui ka klosetipotiilt).

• Klosetipoti kõrvaline seinale tuleb pörandast ca 1200 mm körgusele paigaldada 2–3 nagi rõivaste, karkude, keppide jms riputamiseks.

WC-kabiini minimaalsed sisemõõdud on 2200 × 2500 mm.
• Peegel kavandatakse selliste mõõtmetega ja paigutatakse sellisele kõrgusele, et ta oleks kasutatav kõigile või võimalikult paljudele inimestele. Peegli alumine serv, kätekuivati ja seebialus vms paigaldada kuni 900 mm põrandast.

• Uuematest lahendustest võib leida ka puldi abil muudetava kõrgusega tualetti, sest mõned vajavad madalamat (ratastooliga), mõned hoopis kõrgemat istet (puusavigastus).

• Ukse avamiseks võib uksest 2 m eemale seinale paigutada nupu, mida vajutades läheb uks lahti ja sisenemise järel sulgub automaatselt. Teise nupu abil saab panna ukse lukku.

• Tualettpaber, hoidja ja valgustuse lülitid peavad olema kasutaja haardeulatuses.

Rõdud ja terrassid
Avalike hoonete rõdud ja terrassid tuleb kavandada nii, et nad on aasta ringi kõigile optimaalselt ja sujuvalt kasutatavad. Sealjuures arvestatakse varikatuste juures samu soovitusi kui sissepääsude ja korterelamu rõdude ja terrasside puhul. Lävepakule kehtib nõue 20 mm.
6.2. Teenused

Teenindus- ja kaubandusasutuste kavandamisel ja ehitamisel tuleb läbi mõelda, mismoodi saavad neid kasutada ka erivajadustega inimesed. Planeerimisel ja projekteerimisel on soovitustlik aluseks võtta äärmuslike vajadustega inimesed, näiteks toetuda juhendmaterjali raames loodud persoonadele.

- Automaadi, kassaluugi, taksofoni jne ees peab ratastoolis liikujale olema vaba liikumisruumi 1,5 × 1,5 m.

- Teeninduslettide, -luukide, -kassade vms, piletimüügi- ja kontrollpunktide sobiv kõrgus ratastoolis liikujale on 750–850 mm põrandast,lettide vms all peab olema põlvede jaoks vaba sügavust 300 mm, laiust vähemalt 600 mm ja kõrgust põrandast vähemalt 670 mm. Letid on praegu iseseisvaks kasutamiseks sageli liiga kõrged ka lastele, kes peaksid samuti ulatama üle leti müüjaga suhtlema.

- Ootenumbri võtmiseks peab aparaat paiknema sellisel kõrgusel, et nii laps kui ratastoolis liikujale ulatub numbrit võtma.

- Infoletti on võimalik kavandada kahel kõrgusel, kus madal osa on mõeldud istudes teenindamiseks ja kõrgem osa seistes teenindamiseks.

- Kirjakastid, kassaluugid, raha-, piletici- ja kaubaaautomaadid, prügišahtide avaused, müügiletid ja teised üldkasutatavad objektid peavad olema ligipääsetavad ja nende kasutamiskõrgus peab vastama ka ratastoolikasutajate vajadustele ja võimalustele (automaatide, kassaluukide jms minimaalne kõrgus 0,85 m, kaubaleti maksimaalne ulatuskõrgus 1,4 m, leti kõrgus kas osaliselt või kogu pikkuses 0,8 m).

- Pangaaautomaadi-esise ruumi mõõdud peaksid olema min 915 × 1220 mm. Automaadi juures võiks olla koht kohati toetamiseks. Ligipääs tuleb tagada näiteks panduse abil või muul moel.

- Sularahaautomaatidest raha väljastamine tuleb lahendada võimalikult selgelt ja arusaadavalt. Olulised kohad olgu kontrastselt markeeritud. Kaardi võiks saada enne tagasi kui raha kätte (kipub nt eakatel ununema).

- Nii galeriides ja kunstisaalides, raamatukogudes kui ka töölustusasutustes peaksid käiguteed laudade vahel olema takistusteta soovituskujul 1065 mm laiusest, min 810–915 mm vastavalt funktsioonile.

- Üleriiede nagid (nt kohvikutes jm) peaksid samuti (kas või osaliselt) paiknema kuni 1200–1400 mm kõrgusel põrandast.
• Teenindushoonet puhul tuleb jälgida, et nii ratastooli kui ka lapsevankriga mahuks leitide ja turvaväravate vahelt läbi. Näiteks kauplustes on tihti üleliia kitsad kassavahed. Liikumiseks tuleb jätta 1000 mm laiune ruum.

• Kauplustes peaksid samad kaubaartiklid olema paigutatud vertikaalselt ülevalt alla, nii et neid saaks võtta nii madalalt kui ka kõrgemalt.

• Elektrilise ratastooliga liikujatel on võimalik kaupa põlvedel hoida, kassani jõudes on võimalik osasid toole hüdraulikaga kõrgemale tõesta, et kassapidajaga paremini suhelda. Samas on elektrilised ratastoolid natuke laiemad kui tavatoolid ja kõik ei saa neid endale lubada.

• Võiks olla võimalus ostukorvi ratastooli külge kinnitada, et korv ei libiseks põlvedelt.

• Ostukärud ja turvahallid võiks olla ühildatavad, et lapsevanematel oleks mugavam poes liikuda.

• Kassade juures on kaardimakseautomaadid paljudes kohtades niimoodi kinnitatud, et kaarti näe, kuid PIN-koodi ei ulata panema. Kaardimakseautomaat peaks kindlasti asetsema madalamal letiosal.
• Parkimise varjualune võiks olla poega ühendatud.

• Kaubanduskeskuses peaks olema ka koht, kuhu vanker jätta (lukustatud kinnine ruum).

• Nii WC kui infoleti asukoht peab olema selgelt märgatav. Infolett peaks paiknema sissepääsu läheduses.

• Ideaalis võiksid kauplustes olla kaupade hinnad punktkirjas, teistes asutustes ka ukse number reljeefne ja käelaturises.

**Saalhooned**
kontsert, kino, auditoorium – nägemis- ja kuulmisulatus, istmed ja nendele ligipääs, põrandakalded jne

• Meelelahutusasutustes, auditooriumides ja kino- ning kontserdisaalides peavad olema piisavalt laiad istmetehed vaeglüklejatele ka saali keskel (mitte ainult esimeses ja tagumises reas), nii et sealsamas oleksid ka kohad saatjatele.

• Nägemis- ja kuulmissihid peavad olema tagatud vähemalt sama hästi nagu teistelgi istekohtadel.
• Evakuatsioonid on võimalik lahendada nii, et ühel pool saali on trepp ja teisel pool pandus, kus ratastooliga kõrgemale sõita.

• Teatris, kinos ja kontserdisaalis saab olukorra lahendada ka vähemalt ühe rea ulatuses teisaldavate toolidega.

• Iga esimene 100 istekoha kohta tuleks planeerida vähemalt 2 erinõuetega istekoha, sellest edasi iga järgneva 100 kohta 1 erinõuetele vastav istekohat.

• Erivajadustele vastava istekoha mõõdud on 900 mm (laius) × 1500 mm (reahe või ruum külje peal).

• Oluline on, et saali keskel paikneb laiem koht, et nt teatritooli ümber istuda.

• Vahekoridorid ja uksevad olgu piisavalt avarad, klassi peab igauks sisse pääsema.

Spordiklubid, jäähallid, pallisaalid, uulad, spaad jt sportimiseks mõeldud hooned ja ruumid peavad olema kõigile ligipääsetavad ja kasutatavad, nii et ka tegelikkuses pakutaks kõigile (sh erivajadusega) inimestele vastavat sportimisvöimalust ehk teenust. Erivajadustega ei tuleks arvestata vaid tervisespordi harrastamise seisukohalt, vaid ruumide kavandamisel ja ehitamisel mõelda ka tipptasemel inasporti vajadustele.

• Pesemisruumi dušikoha mõõdud on min 1500 mm × 900 mm ning nad on muu põrandaga võimalikult samas tasapinnas (max lubatud kõrguste erinevus 13 mm).

• Dušikohad peavad olema varustatud käsidušiga ja (klapp-) tooliga, istme kõrgus 438–480 mm. Teisaldatava dušitooli kasutamine ei ole soovitatav (suur libisemise ja tasakaalu kaotamise oht). Tooli kõrval seinal peaks olema rõhtkäsipuu, pikkusega 600 mm ja kõrgusel 800 mm

• Vee äravoolu trapid põrandas võiks paikneda toolist piisavalt eemal.

• Dušivee maksimumtemperatuur võiks olla +49°C.

• Keset käiguteed ei tohi planeerida treppe ega teisi astmeid.

• Desifntsaatorid tuleb vajadusel projekteerida kaldpinnana.
Vastavalt määrusele “Tervisekaitsenõuded ujulatele, basseinidele ja veekeskustele” (RT I 2007, 26, 149, vastu võetud 15.03.2007 nr 80, jõustumine 01.01.2008):

1. Siseviimistluseks kasutatavad materjalid ja pinnad peavad olema tervisele ohutud, nõuetekohased ning vastama tootja poolt ettenähtud kasutusotstarbele.

2. Ruumid peavad olema puhtad, pindade puhastamisel tuleb kasutada “Biotsiidiseaduse” nõuetele vastavaid desinfitseerivaid aineid ning asjakohaseid pesuaineid ja -vahendeid.


4. Pörandapinnad, kus käiaakse jalatsiteta või jalatsitega ning mis on kokkupuutes veega või millele satub vett ja muid vedelikke, ei tohi olla libedad. Pöörandattematerjalide valikul arvestatakse võimalusest standardeid DIN 51130 ja DIN 51097.

5. Ujulates ja veekeskustes, kus ruumide pörandad ei vasta lõigetes 3 ja 4 toodud nõuetele, tuleb terviseohutuse tagamiseks rakendada täiendavaid asjakohaseid meetmeid. Pörandad ei tohi olla libedad, pöörandakate peab olema libisemiskindel, et vältida kukkumisi.

Vastavalt DIN 51130:

- R9 nurk 3º– 10º, vee absorptsioon –,
- R10 nurk 10º– 19º, vee absorptsioon V04,
- R11 nurk 19º– 27º, vee absorptsioon V06,
- R12 nurk 27º– 35º, vee absorptsioon V08,
- R13 nurk üle 35º, vee absorptsioon V10,

Basseini ümbruse puhul arvestada B- või C-klassiga, samuti ka ühiskondlike hoonete duširuumides (rietusruumis võib olla juba A).

Vette-tõstuk peab olema sellise mehaanika ja kinnitusega, et teda oleks mugav kasutada. Vette-tõstuk on soovitatav paigaldada basseini madalama veetasemega ossa, kuna osas basseinides on kõrgem veetaas kasutajatele üle pea ning see-tõttu ebatasavus basseini sisenemiseks.
Saatjale peab olema riietusruumis ette nähtud riietumisvõimalus (kui saatja on erinevast soost – naine meeste riietusruum ei lähe ja vastupidi – peab olema nt eraldi kabiin, kus on ka omaette dušinurk). Ka pered eelistavad ujulaid-spaasid, kus riietusruumis saab terve pere koos olla ja vanemad lapsi abistada.

Riietuskappide-vahelise käigutee laius peaks olema min 1100 mm. Riietuskappides olevate nagide kõrgus peaks olema vahevahemikus 1200–1400 mm Beebide määrmete vahetamiseks mõeldud laua kõrgus peaks olema 865 mm, teiste töötasapindade ja teeninduslettide kõrgus vahemikus 760–865 mm.

- Joogi- jt automaatide esine vaba ruum peab olema min 1400 mm (sügavus) × 1600 mm (laius).

- Saunade planeerimisel jälgida ohutusnõudeid, nii et ka erivajadustega inimeste ligipääs oleks tagatud. Saunalavale minekuks on vajalikud käsipuud lava kõrval või spetsiaalne tõstuk.

- Bassein tuleb kavandada selline, et erineva temperatuuriga basseiniosadesse pääseb ka erivajadusega kasutaja.

- Siseõhu temperatuur peab olema vahemikus +25–32 ºC.

- Erilist tähelepanu tuleb pöörata müra vähendamisele.

**Tervishoiuasutused**

Haiglates tuleb erilise tähelepanuga jälgida sedagi, et kande-raami liikumistee oleks hoone ulatuses absoluutselt sujuv.

- Siseuste laius peab olema 1100 mm, nad tuleb varustada lõögikaitse ning horisontaalse lingiga.

- Siseoseinte välisnurgad vajavad tugevdusi, koridoriseinad horisontaalset käsipuud kogu pikkuses.


- Treppide asemel eelistada panduseid, lift peab olema hölpsalt leitav ja kasutatav.
**Majutusasutused**

Majutusasutustes kavandada tavatubadele lisaks ka invatoad, mille nõueteks on:

- elektriliselt avatav/suletav välisuks;
- uste miinimumlaius 920 mm;
- uksed ilma lävepakuta;
- tubades arvestada vaba ruumiga (manööverdamiseks, ringipööramiseks);
- kappide planeeringul arvestada ratastooliga juurdepääsu;
- soovitav on mitte kasutada nurkide kõigile võimalikult lihtsalt sissepääsu ja sulgemist ratastoolis;
- dušinurk ilma kabiinita, dušisegisti kõrgus 1060 mm, seinal klapptool ja rõhtkäsipuu;
- invavalamu varustatud käsidušiga;
- WC-pott koos invavarustusega;
- peegel ja föön vannitoas sobival kõrgusel ratastoolis ja peegli alumine serv 900 mm põrandast;
- invatoal ühendav uks naabertoaga, mis sobib saatjale;
- kergesti puhastatav, ratastoolile sobiv põrandakate;
- pistiku- ja võrgu kaabl pesad jms soovitavalt kõrgusel 400–500 mm, juurdepääsus ei tohiks olla takistatud mööbliga.

**Reisiterminalid**

Reisiterminalides, olgu nad siis mõeldud ühe või mitme transpordiliigi kasutamiseks, peaksid olema kõik teenused ja ühiskondlikult kasutatavate ruumide osa kõigile võimalikult lihtsalt sissepääsevat ja takistusteta ning mugavalt kasutatavat. Siin kehtivad kõik käesolev juhendis ühiskondliklikhooned osas kirjeldatud üldnõuded, samuti elukeskkonna erinevate kasutajate, kommunikatsiooni- ja disainimeetodite peatükkides väljendatud nõuded ja soovitused infoedastusele.

Terminalid ja transiidikoridorid, (oote)ruumid ja reisimisega kaasnevad teenused kavandatakse nii, et neid saab hästi kasutada mis tahes erivajadusega inimene. Reisimisega kaasnevate teenuste (müügi- ja infoletid, automaadid, kohvikud-restoranid, kauplused jt) puhul kehtivad üldjoontes samad soovitused, mis on välja toodud eespool alalõigus teenused.

Ooteplaatvormide ja perrooniide puhul tuleb jälgida, et transpordivahendisse sisenevate ülemínale oleks ohutu ka erivajadusega inimestele. Kus võimalik, tagada sisenevate ja väljumine perroonilt või ooteplatvormilt samas tasapinnas. Vaegnägijatele tuleb ette näha taktiilne eraldusriba vähemalt 610 mm ulatuses perrooni või ooteplatvormi servas.
Transpordivahendisse sisenemisel ja sellest väljumisel peab valgustatus liikumistee tasapinnas olema min 100 lx; piletikontrolli, piletimüügiautomaatide ja -lettide juures 200 lx.

Ohusignaalid, -märgid ja muu ohutusega seonduv info peab olema dubleeritud ehk audiovisuaalne (nii kuuldav kui nähtav), nii et see on ühtaegu edasi antud nii kuulmispuudega inimesele kui ka vaegnägijale.

Juhul kui sõidukite juures kasutatakse tõstemehanisme, tuleb jälgida, et nende ümber on piisavalt ruumi ka kõigil ümbruselteid (ootavat, liikuvat, erivajadustega, liikumise abivahenditega) inimestel.

Ootealadel ja -ruumides tuleb ette näha istekohad eakatele jt inimestele, kes ei pea pikemat ootamist püstijalu vastu.

Ohustehnika valik ja paigutus (sh häiresüsteemi, tulekahjusignaalimise ja tulekahjusignaalimise seadmete) peavad vastama kehtivatele seadusandlikele normidele, nii et nad ühtlasi arvestaksid kõiki kasutajagruppe.

Seadmete paigutus ei tohi takistada liikumist ega teenuse kättesaadavust. Kõigi, sh ka erivajadustega kasutajate ohutus ja turvalisus on tagatud, häirekellad ja -nupud on vajadusel samas ligipääsetavad ja kasutatavad.

Kontorihooned ja töökohtade kohandamine

- Integreeritud panipaikade ja töötasapindade puhul arvestada rohkom liaiuse kui sügavusega.
- Mugavad on muudetava jalaga mööblide, mobiilsed tööpiidot (muudetav körgus).
- Hooneautomaatika juhitavus – pultide paiknemine haardeulatuses, arusaadavus ja kasutusmugavus.
6.3. Bibliograafia


7. Korterelamud
Kaasava disaini põhimõttete sidumine kotermajad planeerimisega tähendab mõtteviisi juurutamist, mille kohaselt on eri põlvkondadel selles elukeskkonnas mugav ja hea elada. Eri vanuses inimeste elu sama katuse all seab arhitektile ja disainerile eesmärgiks erinevaid eluviise võimaldava sidusaa ruumilise koosluse planeerimise ja detailideni läbi mõtlemise hoone kogu eluea välvel. Lapsevenkristest kuni ratastoolini – võimalikult paljude liikumismooduste ja olmevajaduste arvestamine kaalutakse antud lähene mis puhul läbi nii ruumis kui ajas, nii olemasolevate elamute kohandamisel kui uute kavandamisel.

Korterelamus, kus on rakendatud kaasava disaini põhimõtteteid, on mõeldud eri põlvkondadest pärit ja erinevate vajadustega elanikegruppide omavahelise “naabritoe” soodustamisele. Seetõttu on näidishoonetesse tihti ette nähtud kõigile elanikelle ligipääsetavad “suhtlusruumid” ehk ruumiosad, mis on mõeldud elanikele vaba aja koos veetmiseks, aga ka näiteks tugisikute tarbeks (hooldajad). Linnasotsioloogia suunad, mis väärtustavad nii sugust integreeritud lähennemist, tõstavad esile lahendusi, kus elanikul säilib iseseisvus, kuid on ka loodud tõhus võimalused kogukonna toeks abivajajale.


Kogukonna toimemehhanismide suhteline keerukus seab arhitektile ja disainerile ülesandeks seista kasutaja huvide eest, kuivõrd need on meie ehitise kavandatava eluea keskel (näiteks 30 aasta vältel) ette aimatavad – võttes arvesse näiteks demograafilisi projektsioone (keskmise eluea pikeneamine), eluviise muudatusi (kodukontor, laste iseseisvusemise järel kodu kohandamine vanemate paarile jne), ehitiste kestluskust (põsikulde vähendamine) jpm. Üksikvanemate osakaal sootsiumis seab samuti omad nõuded (laste järelevalvamine, kui vanem on tööl jne). Häid peresiseseid põlvkondadevahelisi suhteid toetavas kortermajas on läbi mõeldud ka see, kuidas siseruum haakub välisruumiga – siseõudede, rõdude, terrasside, katuse- jm aedade rajamise, arendamise ja hooldamise võimalustele ja vajadustele hoone eluea vältil.
7.1. Uued korterelamud ja olemasolevate kohandamine

Sujuv kulgemine ja liikumisteedit kortermajas ja selle ümber – peatusest ja parkimiskohast ukseni, ühistranspordi lähedus, jäätmekäitlus, haljastus ja selle hooldamine (koduaed), välisvalgustus.

Hoone sees – trepikojad ja nende käsipuud ning tõsteseadmed, liftid, pääsud korterisse, pääs rõdule, terrassile ja aeda, uste ja akende mugav avamine ja sulgemine, avatäited, lävepakud ja lukustussüsteemid, fotosensorid, päevavalgus ja üldkasutatavate ruumide statsionaarse valgustuse valgustus (sh rääguse vältimine) ja viimistlus – värvid ja kontrastsus (ruumiosade äratuntavus, teravate kontrastsete varjude vältimine, evakuatsiooniteedest tähistus), kooskõla ohutusnõuetega (päästevahendite paigaldamine jm), signalisatsioon (alarmid) ja akustika, hooldatavus jne. Korteri sisearhitektuuri puhul peab korteri sisemine funktsionaalsus võimaldama selle kasutamist ka erivajaduste puhul.

Ehitiste ökoloogia ja universaalse disaini põhimõtted (olemasolevate kortermajade kohandamise näited, rahastamisvõimaluste sidusus energiasäästu lahendustega – energiasäästu jaoks on teatud määral finantseerimisvõimalusi olemas).

Siin mängivad olulist roli:
- ruumide paiknemine üksteise suhtes, ka nende kõrgus (näiteks väga kõrge ruumide puhul liigub talvisel ajal soe õhk lae alla ja ruumi alumine osa on jahedam);
- kasutuse paindlikkus (näiteks vanni kohandamine dušiks ja vastupidi);
- funktsionaalide ühilduvus ja ligipääsetavus;
- privaatsus- ja turvatunne;
- uste arvu vähendamine;
- panipaikade mõõtmed ja kasutatavus;
- põrandakaldad – lahendused, kus vee äravool ei takista liikumist;
- mööbel ja seadmed (sh jala-, käe- ja seljatoed, muudetava kõrgusega lahendused, ergonoomika, hügieen jne);
- sisekliima (sh viited hoone automaatikale);
- päevavalgus ja valgustus (sh pindadesse süvistamine, mööbl ja seadmetega integreerimine), siseviimistlusterühmad – tekstuurid, ohutus, akustika, värvid ja kontrastsus (ruumiosade äratuntavus);
- hooldatavus;
- info- ja kommunikatsioonilahenduste integreerimine (nt e-teenused abivajajale, häälkäsklusega juhitavad süsteemid jm).
Vananev elanikkond, erivajadustega inimeste vajaduste teadvustamine ja turunõudlus on viinud olukorrani, kus kõik projekteeritavad kortermajad peaksid takistusteta rahuldama kaasava disaini nõudmis. Universaalse disainiga korterite plaanid on kavandatud avarate liikumisruumidega (esik, koridor ja muud käigud tubade vahel, pääsud rõdudele, terrassidele), mis võimaldavad hõlpsat ja sujuvat ruumide kasutust ning ligipääsu. Korterite sees tuleb kõige suuremat tähelepanu pöörata sujuvale liikumisele ja magamistubade, köökide ja vannitubade kasutusmugavusele.

Korteri planeering tuleb teha nii, et korteril oleks võimalik "vananeda" koos selle elanikuga. Korter peab sobima nii eakale inimesele, ratastoolikasutajale kui ka rahuldama tavaliise pere vajadused. Oluline on kavandada eluaegsed kodud – *Lifetime Homes*.[1]

### Põrandajajärvest, terrassiga ühes tasapinnas välisüs. Ukse kõrval sobivas asukohas lülitid.

*Lubjak, I., Cork, Inglismaa, 2010*
SISSEПÄÄSUD JA LIIKUMISTEED


- Ratastooli mõõdud on keskmiselt 700 × 1200 mm.
- Ukse minimaalne laius piidast piidani peab olema 850–900 mm, nii et ratastooli juhtivad käed ei pörkuks uksepiida või ukselehega.
- Ukseava minimaalne kõrgus peab olema 2000 mm ning avanemisnurk min 90°, uks peab avanema täielikult.
- Avatud ukse ees ja taga peab olema piisavalt vaba ruumi ratastooli ümberpöördamiseks ning ukse sulgemiseks või avamiseks, minimaalne pöördediamieter on 1500 mm.\[2\]
- Eakatele või puudega inimestele kavandatav korter on soovitatav lahtendada ühel tasapinnal.

\[2\] Lubjak, I., Barcelona, Hispaania, 2006
Kõik ruumid korteri sees on ühes tasapinnas ja uksed on lävepakkudeta.

Lubjak, I., Cork, Inglismaa, 2010

- Panduste või treppide tekkimisel tuleb lähtuda vastavatest normidest ja trepivalemist.

- Võimaluse ja vajaduse korral tuleb ette näha ruum invatõstukitele või -platvormidele, samuti ruumid või panipaigad, kuhu saab ladustada abivahendeid (ratastool vms).


- Üldist sujuvat liikumist korteris parandab oluliselt hea planeering. Sissepääsu ja esiku vahetuseks peaks olema köök. WC ja vannituba on soovitatav kavandada magamistubade lähedale. Hea lahendus on avatud köök, mis moodustab uhisest ruumil elutoa või esikuga.

- Iseseisva köögiruumi puhul peab ette nägema lävepakuta ukse. Väiksemalt korteri puhul on otstarbekas ühendada ka WC ja vannituba. Selline planeering vähendab oluliselt siseuste arvu ning muudab korteri kasutamise mugavamaks.
Rõdud, terrassid, sisehoovid
Liikumispuudega inimesele on rõdu või terrassi olemasolu eluliselt tähtis. Väljas värskes õhus või pääsespaistem viibimine ning ümbritseva liikumise jälgimine ja sellega suhes-tumine on oluline vahend piiratud liikumise. Sellise, korteriga vahetult seotud välisruumi pind peab olema min 4,5 m² ja vähemalt ühes otsas gabaritidega min 1500 × 1500 mm. Rõdupiire peab olema rõdu põrandast alates 600 mm. Ühes tasapinnas lükanduks terrassile.

Lubjak, I., Tenerife, Hispaania, 2010

Lume ja jää kuhumise vältimiseks on terrassi-, rõdu- või aia-uksed tavaliselt kavandatud terrassipinnast kõrgmale. Tekkiva kõrgustevahe ületamiseks tuleb kavandada teisaldatavad podestid pandustega. Sellist lahendust saab kasutada piisava ruumi olemasolul terrassil või sisehoovis (aias), rõdu puhul on see tõenäoliselt võimalik. Teine võimalus on paigaldada kütte-traadiga vee äravoolu restid vahetult välisukse taha. Selliselt saab lahendada välisruumi põrandas samas tasapinnas sise-ruumi põrandaga. Igal juhul ei tohi lävepak kõrgekin kui 20 mm.

Uste ja akende avatavus (sh lävepakud, lukustus)
- Uste käepidemed peaksid olema kas lingid või “sangad”.
- Väljame peaks nupukujulisi käepidemeid. Ukse käepide kõrgus põrandast on 850...1000 mm. Käepidemed peavad eristuma uksepinnast värvi ja viimistluse osas ning olema kergelt leitavad.
- Soovitavad on taustast selgelt eristuva värvitoomiga kaetud uksed. Klaasustel peab olema klaasi kaitseriba (min 300 mm kõrgusel) ja nähtav märgistus (900...1600 mm kõrgusel) klaasipinna läbipaistvuse tajumiseks.
• Automaatuste seadistamisel peab arvestama, et sensorid tuvastaksid ka ratastoolis liikleja.

• Automaatukse sulgumiskiirus peab võimaldama takistamatut kulgemist lastel, puudega või eakatel inimestel.

• Pöörd- ja pendeluksed ei ole universaalse disaini mõttes kohased. Samasuguseid nõudeid tuleks rakendada kõigi korterisiseste uste juures.

• Korteriuste arvu tuleb vähendada võimaliku miinimumini. Soovitatakse kasutada läbivalt samakäelisi uksi ja lukanduksi seal, kus heliisolatsioon pole oluline.

• Lükand- ja liuguste kasutamine on mugav kõigile.

• Akende suurus võrrelduna seina ja ruumi pinnaga on määratud insolatsiooni normidega. Akende ja muude avade kuju ning paigutus sõltub arhitekti visioonist.

• Aknlaua kõrgus põrandast võib olla max 750 mm. See võimaldab aknast välja vaadata ka istudes. Hea lahendus on aga kavandada klaasipinnad põrandani ning piirata ava välimise pärdega (nn prantsuse rõdu).

• Aknale peab pääsema lähedale, st vältida tuleb kogu aknaesist ala piiravate radiaatorite kasutamist. Samuti peab istudes olema võimalik akent avada ja sulgeda.

• Kremooni käepideme kõrgus peab jääma 850–1050 mm vahele. Sellest lähtuvalt on keeruline kavandada väga kõrgeid või suurte raamidega aknaid.

**WC-D JA VANNITOAD**

Puudega inimesele on vannitõue kasutamine keeruline ja aega nõudev toiming, mistõttu tuleb vannitubade lahendamisesse suhtuda erilise tähelepanuga. Sanitaarruumides kasutatavad materjalid peavad olema hõlpsalt puhastatavad ning mugavad kasutada.

Nägemispuudega inimestele on oluline lisaks kontrastsusele materjalierinevused, nt dušiseinad on viimistletud teisiti kui ümbristev ala. Vannituba peab eile nägema piisava horisontaalse ala, vajaduse korral tõstetud tasapinna, kuhu saab asetada riided ja vajaminevad abivahendid. Abivahendid, nagu ratastool, kargud, käimisraam jne, ei tohi segada ruumi funktionaalsest kasutamisest.
Vannitoa miinimumgabariidid peavad olema 1800 × 2000 mm, mille sees on vaba pind läbimõõduga 1500 mm ratastooli pööramiseks 360°.

Kõikide vannitoa ja WC elementide ja furnituuri disain peab olema läbiv, õiges funktsionaalses järjestuses ning asukohas.

Põrand peab olema libisemiskindel nii kuiva kui ka märjana ja vee äravoolukaldega 1%.

Vee äravoolutrapid peavad olema suurima veevoolu vahetus läheduses. Soovitatav on trapid kavandada seina äärde pikkade äravoolurestidena.

Uksed

- Vannitoa ukse laius peab olema min 850–900 mm.

- Uks peab avanema täies ulatuses ja väljapoole, juhuks kui vannitoa kasutaja vajab vannitoas toimetamisel teise inimese abi.

- Väikeses ruumis ei saa ratasooliga manööverdada ning see võib takistada ukse seestpoolt sulgemist.

- Vannitoa ukse ees, väljaspool vannituba, peab olema vaba ruumi 1500 × 1500 mm.

- Ukse lukustamisel ei tohi kasutada riive ega haake. Sobiv lukustus on avatav ka väljastpoolt. Vannitoa kasutamisel on soovitav ust mitte lukustada, et önnetusjuhtumi korral oleks võimalik kiiresti abistada.​

Kaasava elukeskkonna juhendmaterjal 288

Korterelamud

Mugava kasutuse ning piisava ruumikusega vannituba. Seintel abiks täiendavad kätoed.

Lubjak, I., Tenerife, Hispaania, 2010
WC

- WC istetasapinna kõrgus põrandast peab olema 500–520 mm, selline kõrgus peaks ühilduma mis tahes ratastooli kõrgusega. Kõrgemal asetseva WC kavandamine võib osutuda tõsiselt ohtlikuks.

- WC kõrval peab olema vaba ruumi min 800 × 800 mm ratastoolist potile liikumiseks ja ratastooli parkimiseks.

- WC kõrval peavad olema pöranda või seina külge jäigalt kinnitatud käsipuud pikkusega min 600 mm vöi ulatuma poti esiservast 150 mm ettepoole ja olema läbimõöduga max 35 mm.

- Käsipuude kõrgus WC istepinnast peab olema 280 mm ja omavaheline kaugus 650–700 mm. Käsipuud peavad olema vertikaalsuunas vastu seina liigutatavad ja kindlasse asendisse fikseeritavad ning vastu võtma jõudu kuni 1kN ka käsipuu konsoolses otsas.

- WC-le tuleb ette näha ka seljatugi neile, kellel on raskusi ülakeha hoidmisega.

- Loputuskasti klahv peab olema kas käe või õla ulatuses. Hea on kavandada klahv WC käsipuu külge.

Ruumikamat sanitaarruumi on kõigil mugavam kasutada, eriti ajutise liikumispuudega ja kogukamatel inimestel. Ühevärviline lahendus aga ei paku vaegnägijale vajaliku kontrasti seinte ja pöranda eristamiseks. Käsipuu ei ole ratastoolist klosetipotile siirdumiseks mugavalt paigutatud.

Vaikla, T.-K., Lõuna-Tirool, 2006
**Kraanikauss**
- Kraanikausi kõrgus põrandast on max 800 mm, kusjuures selle alla peab jääma ratastooli jaoks vaba ruum.
- Segisti peaks olema kasutatav ühe käega. Kuum ja külm vesi on reguleeritavad ühe kraaniga.
- Segisti käepide peab olema lihtsalt haaratav, kas kangiga või ristikujulise hoovaga.
- Segisti peab olema reguleeritud nii, et väljastatav kuum vesi oleks 38–45°C. Sellega saab vältida võimalikke põletusi.

**Dušš ja vann**
- Kui dušinurga suurus on min 700 × 700 mm, tuleb kasutada käsipuud.
- Käsipuu kõrgus põrandast on 850 mm.
- Dušinurgas ja vannis võib kasutada vastavaid istetoole või -tasapindu. Istetasapinna suurus 400 × 450 mm, kõrgus 460–480 mm.
- Vann peab olema varustatud käsipuudega ja käetugede ga. Piki vanni peab olema vähemalt ühes pikemas küljes käsipuu.
- Vannis on mõistlik vajaduse korral kasutada fikseeritavaid istetasapinu. Hea on kasutada reguleeritava kõrgusega dušilifte.
- Vanni kõrgus on max 450 mm. Vanni kõrval peab olema 800 × 1200 mm vaba ruumi ratastoolist vanni liikumiseks ja ratastooli parkimiseks.[4]
- Dušinurga vee äravoolukalle peab olema min 2%.
- Dušikardin peab ulatuma allapoole tavapärast dušikardina pikkusest.
- Dušinurgas võiks olla nii vertikaalsed kui ka horisontaalsed käetoed.
- Lisaks fikseeritud dušile peab olema ka käsidušš, mis võimaldab pesemist ka istuvas asendis.
**Furniitur**

- Peegli alumine serv ei tohiks olla põrandast kõrgemal kui 600 mm. Hea on paigutada peegel vahetult kraanikausi kohale. Peegel võiks olla seinapinnaga tasa, statsionaarne ning piisavalt kõrge.

- Paberirull peaks olema tualettpoti lähedal kõrgusel max 700 mm.

- Vastavalt vajadusele peab olema võimalik paigaldada ühe käega kasutatav vedelseebihoidja.

- Riiete ja rätikute nagid peavad olema kõrgusel 850–1050 mm. Lisaks on kas eraldiseisvast riulist, mis on 150 mm sügav, 300 mm lai ja asetseb kõrgusel 850 mm.

**Ventilsioon**

- Vannitoa ventilsioon on soovitatav kavandada mehaanilisena.

Pimedad ja kuulmispuudega inimesed peaksid eespool kirjeldatud vannitoas samuti hakkama saama, kuigi kindlasti pole neile vaja nii palju avarust. Samas võiks ka nende jaoks olla häirenap. Abiks on ka sanitaartechnika ja kogu sisekujunduse kontrastsetes toonides lahendamine.

---

**ELUTUBA, MAGAMISTUBA JA KÖÖK**

Universaalne disain ei määra elutubade minimaalseid mõõtteid. Mööbel, liikumisteed ruumi objektide vahel, akende ja uste paigutus annavad ette toa konkreetsetid gabariidid. Arvestama peaks ruumivajadusega liikumisel ratastoolist mööblini (tool, tugitool, diivan, voodi vms). Tavaliselt piisab 1200 mm laiusest käiguteest ruumi sisustusobjektide vahel.

![Image of a bathroom](image-url)

Ühes tasapinnas ja takistusteta põrandalahendus.

Lubjak, I., Madrid, Hispaania, 2006
Magamistuppa, mis kipub tavaliselt olema liiga väike, peaks mahtuma üheinimesevoodi ära nii, et see on ligipääsetav mõlemast küljest. Ratastoolis liikujale on piisav 1500 mm ühel pool voodit ja 900 mm teisel pool voodit, juhul kui voodis olija vajab kõrvalist abi. Sobilik voodi kõrgus ratastoolikasutajale on 450–550 mm põrandapinnast. Riitikut tähistab siis, kui riitelite ette peab jääma 1500 mm vahekaugus.

Eakatele inimestele on oluline tavalisest kõrgem voodi, millest on lihtsam püsti tõusta. Hea, kui on võimalus täiendavaks toetumiseks ja end käte abil püsti tõmbamiseks, nt capile, seinale kinnitatud toel võms toetudes. Kodudes on sobiva lahendu leidmisel lepitaja põrandapinnast. Riitikut tähistab siis, kui riitelite ette peab jääma 1500 mm vahekaugus.

- Kõik valgustuse ja alarni lülitid, öökapid ja sahtlid peaksid olema kõnealustes mõlemalt poolt voodit.
- Köögis on oluline paigutada töötasapind nii, et seda saab kasutada istuvas asendis.
- Kraanikauss ja pliit kui kõige enam kasutuses olevad elemendid peavad asetsemaks lähedikus. See välalistab üleliigse ja väsitava liikumise edasi-tagasi.
- Toidu ettevalmistamise koht on mõistlik paigutada töötasapinna otstesse, nii et seda saaks kasutada kahest või kolmest külgist.
- Panipaigad, kapid, riulud ja külmkapp tuleb paigutada töötasapinna vahemikku 400...1400 mm. Seega puudega inimene kõrgu ruumivajadus mõjutab töötasapinna pinnana.
• Köögi kasutamisel istuvas asendis tuleb tähelepanu pöörata jalgade ja põlvede ruumile nii töötasapinna kui ka pliidi ja kraanikausi all. Ratastooliga peab mahtuma istuma ka laua taha.

• Ruumi peab jätkuma ka muu liikumisabivahendi paigutamiseks kööki, ilma et see blokeeriks liikumistee. Et saada probleemideta ratastoolist tavatooolile, peab olema piisavalt manööverdamisruumi. Tavapärane riulilite paigutus töötasapinna kohal on ratastoolis inimesele täiesti kasutu.

• Tsentraalne tolmuimemine on suureks abiks korteri heakorrastusel.

• Liikumispuudega inimesele on oluline prügišaht olemasolu korteri sees. Mõistlik on see kavandada kööki, kuid mitme naabri peale ühine prügišaht korteri välisukse taga trepikojas on ka hea lahendus.


Ratastoolikasutajale sobivad väljatõmmatavad köögiüliid. Ülemine ahi ja seinakapid jäävad aga ratastoolikasutajale kättesaamatuks.

VALGUSTUS

Korterite valgustusele tuleb mõelda juba arhitektuurilise projekteerimise käigus. Insolatsiooninõuded on määratud projekteerimisnormidega.

Tagada tuleb piisav loomulik valgus. Vältima peab valgusreostust – räiget pimestavat valgust mis tahes kõrgusel –, samuti suurt kontrasti valgustatud pinna ja hämarate ruumide vahel.

Kõik valgusti, fonotelefoni, automaatika ja häired tuleb kavandada põrandast max 850 mm kõrgusele. Häirenupp võiks olla kindlasti vannitoas ja WC-s.

VIIMISTLUS JA SELLE HOOLDATAVUS

- Nägemispuudega inimesele on parim lahendus, kui ruum on kontrastne, st värvikontrastide ja materjalierinevuste kaudu on eristatavad seinad, laed, pörand ja mööbel.

- Oluline on, et ei kasutata ülemäära palju klaaspinda, mis tekib peegeldusi ja heidab segavaid varje.

- Kõik kasutatavad viimistlussomad teavad peavad olema lihtsalt hooldatavad, korteri välisperimeetril (välisukse, seinad) ka vandaali- ning grafitikindlad.

Eerole kasutatavad kodumasinad peavad jääma joonisel toodud kõrguste vahele. Piit on soovitatav tavalisest madalamale projekteerida, siis näeb Eero ka kastrulisse.

Kaasava elukeskkonna juhendmaterjal 294
Korterelamud
Põrandad
• Põrandakate peab olema stabiilne, mitteläikiv ja antistaatiline.
• Soovitatav on kasutada looduslikke ja vastupidavaid materjale, nagu linoleum, millel on kõik sobivad omadused ratasooliga liikumiseks ning hõlpsaks hooldamiseks (kuivpuhastus).
• Vältida tuleb kirevaid mustreid ja erksaid värvitoone.
• Kuna vaheruumid jäävad tavaliselt korteri pimedamatesse osadesse, kus puudub loomulik valgus, on soovitatav põrandakatted kavandada heledates toonides.
• Märgades ruumides peab põrand olema libisemiskindel nii kuiva kui ka märjana.

Seinad
Inimesed, kellel on probleeme nägemise või liikumisega, kasutavad seinapindu orienteerumiseks, ennekõike kohtades, mida nad ei tunne. Sel põhjusel peavad seinad olema hõlpsalt puhastatavad ning soovitatavalt on neil ümardatudääre- ja piirdeliistud, mis kaitsevad ka konstruktsiooni löökide eest. Seinte viimistlus ei tohi koguda tolmu.Lülitid, pistikupesad
jm tuleb paigutada sobivale kõrgusele 400…1400 mm, et neile pääseks lihi ratastoolist.
• Lülituslahivid peavad olema sobivas suuruses, on hea, kui sisse- ja väljalülitamist saab sooritada küünarnuki abil.
• Seinte viimistlus peab olema pestav ning võimalikke ratastooli muljumisi vastuvõttev või lihtsalt remonditav.
• Sobivad materjalid on vastupidavad:
  » kivi;
  » betoon;
  » puit;
  » vineer.
  » Vältida tuleks keskmisest pehmemaid ehitusplaatide (kipsplaat).
• Parim pinnakate on pestav värv. Võimalik on kasutada vastupidavamast materjalist nurgatugevdusi.

Laed
• Laed tuleb kavandada traditsiooniliselt heledates toonides. Nad ei tohi koguda tolmu ja peavad olema lihtsalt puhastatavad.
7.3. Normid, regulatsioonid, standardid

ÜRO konventsioon
- Convention on the Rights of Persons with Disabilities (Eesti allkirjastas 2007)

EL
- Article 21.1 of the EU Charter of Fundamental Rights
- Regulations concerning technical standards for means of transport
- The EU Disability Action Plan 2004–2010
- Recommendation R (92) on a Coherent Policy for Persons with Disabilities
- Recommendation R (83) Concerning the Legal protection of Persons Suffering from Mental Disorder Placed as Involuntary Patients
- European Charter on Sport for All: Disabled Persons
- Recommendation R (98) 3 on Access to Higher Education
- Resolution AP (2001) towards full citizenship of persons with disabilities through inclusive new technologies

Euroopa Nõukogu
- Resolution: Introduction of universal education in all courses.
- Resolution: Full participation through universal design
- The Council of Europe’s action plan for people with disabilities 2006–2015

Põhjamaade Ministrite Nõukogu
- Cooperation forums with a focus on Design for everyone/
  Universal design within the various sector areas

Eesti seadusandlus
- Ehitusseadus
- Nõuded liikumis-, nägemis- ja kuulmispuudega inimeste liikumisvõimaluste tagamiseks üldkasutatavate ehitistes
- Erinõuded tervisekaitse ja ohutuse osas (nõuded lasteasutustele ja koolidele, toitlustusasutustele, tööohutuse- ja tulekaitse nõuded jt) Üldised tuleohutusnõuded on alates 1.09.2010 sätestatud «Tuleohutuse seaduses”[5]
- Määrus “Ehitisele ja selle osale esitatavad tuleohutusnõuded”
- EVS 811:2006 Hoone ehitusprojekt
- Muinsuskaitseeadus

Soome seadusandlus ja juhendmaterjalid
- Suomen rakentamismääräyskokoelma (F2)

Rootsi seadusandlus
• Swedish disability policy: Disability Policy (Responsibility of National Authorities for Implementation) Ordinance (2001:526), Handisam

Taani seadusandlus
• Accessibility for everyone DS-105 (Outdoor areas for everyone)
• Building regulation 95 (accessibility requirements)

Saksa seadusandlus ja juhendmaterjalid
• DIN 18040-1 (ühiskondlikud hooned)
• DIN 18040-2 (elamud)
• DIN 77800 (soovitused arendajatele)

Norra seadusandlus
• Anti-Discrimination and Accessibility Act (2009)
• The Planning and Building Act

Hiina seadusandlus
• Hong Kong Planning Standards and Guidelines

Jaapani juhendmaterjalid

Kanada seadusandlus
• Alberta Building Code (ABC)
• City of Toronto. Accessibility Design Guidelines. Toronto 2004

Kaasava elukeskkonna juhendmaterjal 297 Korterelamud
7.4. Bibliograafia


4. A. Boudeguer Simonetti, Manual de Accesibilidad para personas con capacidades diferentes en Áreas Silvestres Protegidas del Estado. Santiago de Chile.

8. Materjalid ja tehnoloogiad
Materjalid määravad tulevase toote vastupidavuse ja välja-
 nägemise. Disainprotsessi algfaasis on oluline läbi töötada
 kõik materjalilahendused. Otstarbekas ja säästlik on viia eri
 materjalide hulk miinimumini. Toodete projekteerimisel ei
 tohi materjalivalik funktsiooni ja vormi üle domineerida.
 Toote vastupidavus sõltub suures osas erinevate omadustega
 materjalide ühendusi ning üldisest tugevusest. Oluline
 on teada, et üks ja sama materjal käitub erinevates tingimus-
 tes ja sõltuvalt pinnaviimistlusest või lõikamis/painutamisvi-
 sist erinevalt.

Osa orgaanilist päritolu materjale (puit, vineer) reageerivad
 ilmastikutingimustele tugevamalt ning nende kasutamisel
 tuleb öiget lõikamis/painutus/viimistlemismeetodit täpselt
 valida. Juba disainprotsessi algfaasis – skitseerimise faasis –
 on oluline pöörata tähelepanu materjalide hilisemale ümbertöö-
deldavusele ja ökoloogilisusele.

Kui toote algmaterjal on ümbertöödelav, ei tähenda see
 automaatselt, et toode on ökoloogiline. Seda juhul, kui projek-
teerimisprotsessi algfaasis pole ökoloogilisuse aspektile eraldi
 tähelpanu pööratud.[1] Toodete projekteerimisel on oluline
 arvestada, et erinevad inimgrupid tajuvad materjalide erinevaid
 palju- ja käivikuid inimgruppidele sobiv lahendus.

Nägemispuudega inimesele on erinevad pinnakaredused
 aärmiselt olulised: nende kaudu tajub ta tee ja ümbristeva
 keskkonna ohutust. Toodete projekteerimisel on oluline
 arvestada, et erinevad inimgrupid tajuvad materjalide
 erinevaid pinnakaredusi. Oluline on arvestada, et materjalid
 määravad tulevase toote vastupidavuse ja välja-
nägemise. Toedete projekteerimisel ei
 tohi materjalivalik funktsiooni ja vormi üle domineerida.
 Osa orgaanilist päritolu materjale (puit, vineer) reageerivad
 ilmastikutingimustele tugevamalt ning nende kasutamisel
 tuleb öiget lõikamis/painutus/viimistlemismeetodit täpselt
 valida. Juba disainprotsessi algfaasis – skitseerimise faasis –
 on oluline pöörata tähelepanu materjalide hilisemale ümbertöö-
deldavusele ja ökoloogilisusele.

Kaasava elukeskkonna juhendmaterjal

300

Materjalid ja tehnoloogiad
kuumakindlusega, nt iste- ja toetuspinnad, katendid, ukselin-gid jm. Materjalivalikul on oluline ka niiskuskindlus, Eestis on sademete keskmine hulk 550–750 mm aastas. Karedate pin-
dade projekteerimisel peab silmas pidama hilisemat hõlpsat
hooldamist ning kliimatiilistest ja mehaanilitest teguritest
tingitud deformeerumist. Viimistlus peab olema korrektne.
Väga täpselt on määratud materjalide kasutamine näitena
mänguväljakute rajamisel, standard EVS EN 1176.

Siseruumides kasutatavad materjalid peavad toetama ruu-
mis hakkamasaamist ning olema võimalikult neutraalsed,
hõlpsalt puhastatavad ning selgelt mõistetavad. Vältida tuleks
liiga siledaid materjale, mis võivad põhjustada kukkumist
ja libastumist. Eelistada tuleks võimalikse naturaal-
seid materjale, mis loovad siseruumis vajaliku hubasuse ning
on käepärasemad igapäevakasutuses. Ilmastikukindlus pole
siseruumimaterjalidel niisugust oluline kui vastupidavus ja
funktsionaalsus.

Puit
Puit on traditsiooniline materjal, millel on väga lai kasutus-
valdkond alates ehitusest ja mööblitööstusest kuni mänguväl-
jakute rajamiseks ja piirete ja terrassideks. Puidu eeliseks
on tema soojus, teda on mugav kat-
suda ning tema pinnatemperatuur välitingimustes ei muutu.
Seetõttu on puit laias kasutuses istetasapindade katmisel,
mänguväljakute inventarina ning piirete ja terrassidena.

Täispuidu kasutamisel on mõistlik selle termotöötlemine. See
annab tootele kauakestva vastupidavuse. Termotöötlemis protsess,
mitte viia kui läbi spetsiaalses kambris temperatuuril 190–215°C. Protsessi
käigus ei kasutata kemikaale. Tulemuseks on seenhaiguste-
hallitus- ja mändanikuvaba puit, mis peab pikaajaliselt vastu
es keskkonnamõjudele.

Veelgi vastupidavam keskkonnamõjudele on liimpuit. Liimpuit
kaardub ja lõheneb oluliselt vähem kui tavaline puit. Liimpuit
koosneb puidulippidest sõrmatiga jäätmekasuteteel moodusta-
tud laPauladest, mida kuivatatakse kuni 10% niiskusesisalduse
saavutamiseni, seejärel ühendatakse spetsiaalse liimi abil
vajalike mõõtmetega plaatideks.

Ölitamine parandab materjali stabiilsust ja suurendab vastu-
pidavust ilmastikuoludele.
Puidu paindeomadusi saab rakendada vineerist toodetel. Sõl-
tuvalt liimisegudest ja töötlusviisidest saab vineeri kasutada
nii siseruumis kui ka välitingimustes.

Metallid
Metallkonstruktsioonidel on lai kasutusvaldkond ehituses.
Nende abil saab luua kergeilmelisi, kuid vandaalikindlaid
tänava inventarilahendusi ühistranspordi ootepaviljonidest
väikevormideni. Kehaga kokkupuutuvad ja väliskeskkonas asetsevad metallsemed on mõistlik teiste materjalidega katta, et vältida kuumenemist ja allergiaid.

Enimkasutatav materjal tänavainventari projekteerimisel on roostevaba teras. Roostevaba teras sisaldab piisavalt kroomi, mis moodustab passiivse kroomoksidi hihi, takistades pinna roostetamist ja rooste levimist metalli sisestruktuuri. Roostevabad terastooted reeglina kas tsingitakse või pulbervärbitakse.


Sõltuvalt konkreetsest disainist ja kohaspetsiifikast on võimalik kasutada erineva pinnatöötusega teraseid. Peale roostevaba kattega terase kasutatakse ka tsingitud või värbitud terast. Viimasel ajal on populaarsust võitnud korrodeerunud pinnaga teras ehk corten.


Kõikide metallide kasutamisel on soovitatav piirduda tehase- liste profilide kombineerimisega uueks tooteks. Kuid erinevate sulamite kasutamine võimaldab valmistada ka mis tahes kuju ja funktsiooniga objekte.

Klaas

Klaasi kasutamisel on oluline rõhutada selle peamist oma-dust– läbipaistvust. klaas laseb tähiti nähtava valguse, kuid takistab UV-kiirogenist. Klaas on habras, kuid karastamisel ja lamineerimisel saab selle purunemisvõimalusi vähendada.
Klaasi toodetakse tavaliselt valuklaasina, kus klaasimass valatakse tasapinnaliseks plaadiks paksusega 2–25 mm.

Valtsklaasi valmistatakse spetsiaalsete rullmehhanismide abil. Valtsklaasi sisse saab sulatada armeerimisvõrke ja tugevdustraate.


Kogu viimistlusprotsess, nagu servade töötlemine ja puuri-mine, tuleb teostada enne klaasi karastamist.

Betoon

Betoon on isetahenev tehismaterjal, mis saadakse tsemendi, vee ja täiteaine segust. Kuna täide on tavaliselt looduslik kivi (killustik, kruus, liiv) loetakse betooni inimese loodustekokseks.

Beton on tugev, mitte just liiga kallis ja kergelt valmistatav materjal. Betoon on piiramatu võimalustega, sellest saab valmistada pea igasuguse kujuga eseme, valades segu ükskõik millisesse vormi.


Mehaaniliste pinnatöötlusimeetodidega, nagu poleerimine, karestamine või fototrükk, saavutatakse betoonelementide eriilmelisus.

**Plastik**

Plastik on tugev, mitte just liiga kallis ja kergelt valmistatav materjal. Plastik on piiramatu võimalustega, sellest saab valmistada pea igasuguse kujuga eseme, valades segu ükskõik millisesse vormi.


Plastikute põhiline materjaliomadus on praktiliselt piiramatu vormivabadus. Plastikute eelis on tugevus, mida ei saa muid materjale ehitada ja kasutada. Kui on võimalus valida puidu ja plastiku vahel, tuleks eelistada puidu, mis võimaldab disainida saledaid või õõnsaid vorme.

**Plastikute kasutamine**
Duroplastikud on tugevad ning pärast valmistamist termiliselt raskesti töödeldavad, võimalik on vaid mehaaniline töötlus. Duroplastikuid kasutatakse põhiliselt pinnakatte-materjalide sideainena. Neid saab lisada mitmetesse ehitussegadesse ja kasutada vuukimisel niiskuskindlates silikoonides.

8.1. Bibliograafia


9. Disainimeetodie
Käesolevas peatükis vaadeldakse disainiprotsessi ehk teekonda, mille disainer koos tellijaga läbib probleemi ja võimaluste kaardistamisest kuni lõpliku lahenduseni jõudmise. Tellijatel on oluline mõista loomeprotsessi olemust, et õppida nägema ja analüüsima loovate lahenduskäikude ja -võimaluste paljusust ning nende põhjal parimate tulemuste saavutamiseks valikute tegemise tagamist. Disainiprotsessi, -meetodite ja -tööriistade kirjeldamise abil püütakse järgnevalt selgitada võimalusi, kuidas mõjutada tulemuse kvaliteeti ning kuidas disainerid ja arhitektid erinevaid tööriistu eri tööetappides rakendavad.
9.1. Disainiprotsess

Disain on loogiline ja mõtestatud tegevus, mille peamiseks eemärgiks on luua elukvaliteeti parandavaid keskkondi, teenuseid ja tooteid. Erinevad disainerid kasutavad oma tõos erinevaid meetodeid ja tööriistu. Disainiprotsessi põhikomponentid on aga sarnased – alati kasutatakse olukorra analüüsi, mis hõlmab nt taustauuringut, sihtgrupi (klientide, kasutajate) olemuse ja nende ootuste ning vajaduste määratlemist, ideede genereerimist ja nende visualiseerimist (nt skitseerimist), modelleerimist, prototüüpimist ja testimist. Disainiprotsessi kirjeldamiseks on loodud hulgaliselt skeeme ja definitsioone. Üks üldistavamaid on topeltteemandi diagramm (Double Diamond Diagram)[1], mis võeti Design Councili* poolt kasutusele 2005. aastal, et kirjeldada disainiprotsessi lihtsal graafilisel viisil.

Topelt-teemandi disainidiagramm koosneb neljast D-st, mille abil jaotatakse disainiprotsess neljakse faasiks:

- **Discover** (avastamine);
- **Define** (määratlemine);
- **Develop** (arendamine);
- **Deliver** (pakbumine).

*Suurbritannia Disaininõukogu

**Avastamine**

Disainiprotsessi alustatakse uue toote, teenuse, keskkonna või olemasoleva täiendamiseks või kohendamiseks. Lükke disainiprotsessi alustamiseks võivad anda erinevad tegurid, näiteks tekinud probleemid olemasoleva lahendusega, uued materjalid või tehnoloogiad, uued turule tuhnud tooted või tehnused vmt. Protsessi esimene veerandi eesmärk on mõista olukorda ning selle pakutava võimalusi.

Selles etapis kaardistatakse probleemi eri aspektide analüüsides turgu, trende ja teisi allikaid, püstitatakse küsimusi ja hüppeteese. Avastamisetapp aitab välja selgitada probleeme, võimalusi ja kasutaja vajadusi, kellele tulemus on suunatud, ning tutvustab võimalikke valdkondi disainilahendusteks.

Neljaks põhileeks informatsiooni võtmeallikaks on:

- turu-uuringud
- kasutajauuringud[2] (näiteks etnograafilised ja jälgivad)
- teabehaldusmeetodid
- disainiuuringud

Avastamisetapis läbitavad faasid kajastavad läbi terve disainiprotsessi, arvestades pidevalt uuenevat informatsiooni, kasutaja vajadusi, uusi tekkivaid kontekste või väljakutseid, mis tõusevad esile või mis avastatakse protsessi arenedes.

Kaasava elukeskkonna juhendmaterjal 309  Disainimeetodid
Avastamine  Määratlemine  Arendamine  Pakkumine

Topeltteemandi protsess. Disainiprotsessi neli etappi.
Design Council, 2005
Määratlemine
Teine veerand topelteemandi mudelist tähistab defineerimisstaadiumi. Siin määratletakse ja tõlgendatakse eelmisest etapis saadud info ning viiakse see vastavusse projekti eesmärkidega.

Määratlemisetapi osad on:

- projekti arendamine;
- projekti juhtimine;
- disainiprojekti lähteülesande koostamine.

Määratlemisetapis analüüsitakse ja sünteesitakse avastamisetapis paika pandud ideed ja suunad lähteülesandeks. Disainilähteülesanne koostatakse avastamisetapis kogutud info süstematiserimise ja analüüsi tulemuste ja projekti vajaduste põhjal. Lähteülesande staadiumis on oluline teada tootja tehnilist võimekust, loodava vajalikkust, otstarbekust ning konkreetset kasutajagruppi tulevikus. Klassikaline lähte- punkt vähem on rohkem[3], tasub end üldjuhul kuhjaga ära, eriti materjalikulu kontekstis.

Arenenud riikides võimaluste ja asjade ülekülluse taustal peab loodav disain olema selgelt positsioneeritud ning tootearendusprotsessis detailideni läbi mõeldud – halvad disainerid disainivad toole, head disainerid mõtlevad, kuidas seda välitida (bad designers design chairs, good designers think how not to).[4]

Alustuseks peaksid nii tellija, disainer kui teised protsessis osalejad vastama kolmele selgele küsimusele – kellele, mida ja miks. See süsteem kehtib nii toodete, teenuste, keskkonna kui kõige muu disainitava osas.

Lähteülesande paika panemiseks on vaja teha koostööd sihtühingus esindajatega, mitte tugineda tiimikaaslaste arvamustele ja oletustele. Uurimistulemuste toetumine aitab minimeerida juhuslikkust nii tulemustes kui disainiprotsessis ning tagada kvaliteetne resultaat.

Määratlemisetapp lõpeb probleemi(de) selge kaardistusega ja sellele toetuvad disainipõhise lahendusplaaniga. Selles etapis tõusevad esile ka strateegilised dialoogid ning määratakse võimalikud pudeleklased, võimalused ja välistatavad teemad enne kontseptsiooni kinnitamist.
Arendamine
Kolmas veerand tähistab arendamisstaadiumi, mil töötatakse välja disainilahendused, mida prototüübitakse ja korduvalt katsetatakse.

Võtmetegevused ja eesmärgid arendamisstaadiumis on:

• multidistsiplinaarse koostöö;
• visuaalne juhtimine;
• arendamine ja loomine;
• testimine.

Arendamisetapis töötab meeskond välja ühe või mitu ideed eelnevast kahes etapis esile tõusnud probleemide lahendamiseks. Kasutusel olevad toote arendamise meetodid sisaldavad loomingulisi töötamisviise ja meetmeid, nagu ajurünkakut (brainstorming), visualiseerimist, prototüüpimist, testimist ja stsenaariumide loomist. Arendamisetapi meetodid ja tööprotsessid ühtivad paljuski määratlemisetapi omadega, kuid antud olukorras on need fokuseeritud toote või teenuse teostamise ettevalmistamisele.

Selles staadiumis pannakse vastavalt lähteülesandele paika toote tehniline kirjeldus. Suurepäraste disaini eelduseks on tavaliselt hoolikas uurimus analoogsete toodete või lahenduste kohta, tugis ajurünnaak mitmekesise osavõtjaskonna poolt, rohe prototüüpimine ning mitmekordne katsetamine, testimine ja konseptsiooni loomine. Disainilahendus, mis selle staadiumi jooksul ei arene, ei ole tõenäoliselt kuigi palju väärt. Arendamisetapi lõpuks on disainiprotsessis jõutud valmistamise või tootmise ettevalmistamiseni.

Pakkumine
Viimane veerand topeltteemandi protsessist esindab üleandmise/tarnimise staadiumi. Toode või teenus on lõpetatud, testimine ja alustatud selle suunamist õigele turule. Selles etapis valmiv toode või teenus peab olema vastavuses avastamises avastamisetapeis esile toodud probleemidega.

Olulised tegevused ja eesmärgid pakkumisstaadiumis on:

• Lõplik katsetamine, lahenduse heakskiitmine ja turunduse algatamine.
• Eesmärkide püstitamine ja hindamine, tagasisidemehhanism.
• Disainiprotsess ei kulge kunagi linearselt, vaid juba lähitud etappide juurde tullakse vajaduse korral, näiteks uue teabe ilmnemisel, protsessi käigus tagasi.

Kaasava elukeskkonna juhendmaterjal 312 Disainimeetodid
Lineaarse kulgemise puhul läbitakse disainiprotsess üks kord, igasse järgmisesse etappi jõudmiseks tuleb läbida sellele eelnev etapp. Korduva puhul läbitakse disainiprotsessi mitmeid kordi, iga korraga loodavat lahendust täiendades. Lineaarselt läbitav protsess on eelistatud, kui disaini lähteülesanne ja tulemuse detailne kirjeldus on täpsed ja muutumatud ning protsessi korduvus ei oleks tasuv. Kõigil ülejäänud juhtudel on eelistatud protsessi kordumine.

Disaineri kaasamine kõikidesse arendus- ja loomisprotsessi etappidesse tagab professionaalse lahenduse, hilisema maksimaalse kasutusmugavuse ja suurema läbimüügi, tootmisprotsessi madalamad kulud ning kokkuvõttes kvaliteetsemad tooted, teenused või keskkonnad. Edukas disainilahendus peab esmalt vastama kasutaja põhivajadustele (funktsioon) ning seejärel täitma teisi eesmärke (lisaväärtused, ahaa-efekt, esteetika jmt).

Üheks võimalikuks lähtekohaks on Maslow’ tüüpushäädu kasutamine arendus- ja loomisprotsessi etappidesse, mis määrab disaini põhivajadused ja nende prioriteete, mis vajalikud disainilahenduse jaotamisel. Maslow, A., 1943

Hea disainilahenduse puhul on projekteerimisprotsessis lähtutud kõigepealt funktsioonist, kuna see on põhivajaduseks ning alles seejärel on pööratud tähenduse suurendamiseks. Valve disainilahendus on tüüpushäädu alustav üksikus sekkumisprotsess, kus disainer on esmakordselt sõltunud kasutaja nõustustest.
Järgnevalt on välja toodud viis võtmetegurit eduka disainilahenduse projekteerimiseks:

- **Funksionaalsus**
  Toimimine, vastamine põhieesmärgile. Näiteks video-magnetofoni miinimumfunktsooniks on video salvestamine, salvestise taasesitamine. Need on toote põhifunktsioonid. Selles etapis on disainiosal nähtav väärtus madal.

- **Usaldusväärsus**
  Usaldusvääärne on kindla kvaliteediga ning terviklik. Videomagnetofon peab võimaldama teatud kvaliteediga salvestamist ja taasesitamist. Sel les etapis on tootedisaineri töö kasvava tähtsusega.

- **Kasutusmugavus**
  Teisisõnu, kasutamise lihtsus. Videomaki puhul on sel-leks lihtne ja kiire programmi seadistus, mis vähendab valest kasutamisest tulenevaid vigu ning annab vead n-ö andeks. Disainiosa on siin keskmise tähtsusega.

- **Vilumus**
  Eesmärgiks on õpetada inimesi tegema asju paremini, kiiremini ja lihtsamalt kui enne. Videomaki näite puhul võimalus valida salvestamist märksõnade vm lühitunnise järgi. Disaini väärtus kasvab.

- **Loomingulisus**
  Püramiidi tipus on innovatiivsus. Sellesse etappi jõudmisel on lahendatud kõik eelnevad punktid ning kasutajal on lisaväärtusena loodud võimalus avastada ja kasutada midagi uut. See on disainprotsessi nähtavaim osa, mille järgi saab otsustada, kas tulemus on hea ja jätkusuutlik ning kas kasutaja võtab selle omaks.

Kaasava elukeskkonna juhendmaterjal 314 Disainimeetodid
9.2. Kasutajakeskne disain

"Disain on liiga tähtis, et seda jätta ainult disainerite hooleks". [6] Selle lause mõte tähendab kahte asja:

- esiteks, disainerid peavad tegema koostööd teiste eriala esindajatega ning tavainimestega;

- teiseks, disaini metoodika on tehnoloogiliste objektide ja sotsiaalsete süsteemide loomiseks nii võimas innovatsiooni moodust, et seda peaks oskama kasutada kõik inimesed, mitte pelgalt disainerid. Disaini meetoditest ja töövõtetest tulenev loomevõime peab kättesaadavaks muutuma kõigile.


Kasutaja osavõtt disainiprotsessist tagab kaks fundamentaalset aspekti:

- esiteks, toode vastab tõepoolest nende vajadustele,

- ning teiseks, kasutajad hindavad tooted rohkem, sest nad on osa võtnud disainiprotsessist. [8]

Kasutajakeskse disaini rakendamiseks on palju meetodeid, traditsioonilistest tarbijapõhistest uurimustest kuni uute, arenevate eksperimentaalsete disainimeetoditeeni. Reaalselt on laialdast kasutust leidnud kolme lähenemisviisi kombinatsioon: etnograafilisel meetodil põhinev jälgimine, prototüüpi-dega katsetamine ning lähennemisteed, mis toetavad disaineri ja kasutaja omavahelist koostööd. [9]
Eeltöö

uurimine/sondeerimine

Disaini lähteülesanne

Ühistegevus

uurimuse tõlgendamine

Disainile keskendumine

Disaini kaardistamine

vaatlus

prototüübi testimine

Kasutajakeskse disaini meetodite eesmärgiks on toetada disainereid ja kasutajaid uute disainiprobleemide kaardistamisel ja lahenduste leidmisel. Kasutaja uurimiseks on vaja välja töötada hulk kasutajagruppidele antavaid eksperimentaalsete ülesandeid, et koguda personaalsed tähelepanekuid ja tõlgendusi antud ülesande kontekstis. Disainiprotsessi kaasatud kasutaja uurimine on keskendunud kasutaja kogemuside ning usaldab kasutaja ettepanekuid ja tähelepanekuid. Uurimused võivad sageli välja kujuneda pigem inspireerivaks kui informatiivseks.

Disainerid ja disainiprotsessi kaasatud kasutajad on paremini ette valmistunud omavaheliseks koostööks, kui nad on eelnevalt disaini teemaga kurssi viidud. Eeltöö paneb inimesed rohkem tähelepanu pöörama oma senistele kogemustele ja harjumustele ning aitab paremini keskenduda eesolevalt ülesandele. Disainerite ja kasutajate teatud uurimised omavaheliseks koostööks alustamiseks lisab uue faasi kasutajakeskse disaini läbiviimiseks, pikendades seega kogu disainiprotsessi aega. Koostöösessioone plaanides tuleks kindlasti optimeerida tulemuslikkuse ja kuluva ressursi suhet.

Disainiprojekti alguses kaaluvad disainerid disaini võimalusi, piiranguid ja lahtiseid teemasid, töötades läbi lähteülesande materjali ja teisi informatsiooniallikaid, määratledes ette tulla võivaid probleeme ning luues võimalikke alternatiivseid lahendusi.

Esimene kasutajakeskse disaini läbiviimise põhietapp hõlmab pearmiselt uuringu teostamist ning on suunatud kasutaja kaasmisele disainiprotsessi.

**Eeltööetapp (Priming Phase) – Varajane keskendumine kasutajatele ja ülesannetele**

Disainerid peavad endale teadvustama, kes on toote tulevased kasutajad. Selleks tuleb eelnevalt tundma õppida nende tunnetusi otseselt, käitumuslikke, antropomeetrilisi, hoiakulu iseloomujooni. Eeltööetapp ei keskendu otseks toote või teenuse disainimisele, vaid potentsiaalse kasutaja iseloomujoonte ja elustiili ning üldjoontes ka tulevate toote või liigendama seonduvate tegurite, situatsioonide ja kontekstide uurimisele.

Selles etapis valmistavad disainerid disainiprojekti edendamise eesmärgil otseks kasutajatele suunatud ülesandekomplekte, mis suunavad kasutajat ennast dokumenteerima ja analüüsima. Kasutajatele antavad ülesanded on kohandatud vastavalt iga uurimuse eesmärgile. Ülesanded on nii kirjeldavad vastavate disainiprojektide ennast lähedast iseloomuga – kasutajatel palutakse kirjeldada nii oma kogemusi kui ka ennustada võimalikke perspektiivseid lahendusi.
Ülesanded võivad sisaldada:

- päeviku pidamist, et dokumenteerida kasutaja igapäevaelu ja tema mõtteid;
- kasutaja pildistamist, et jäädvustada situatsioone;
- lahtisi küsimusi kasutajapoolsete seisukohtade tuvastamiseks.

Etapi lõpus kogutakse kasutajatelt saadud info kokku ning analüüsitakse ja töödeldakse seda. See on sisendiks ka järgmisesse ehk teise põhitappi, milleks on ühistegevus (Joint session). [9]

Ühistegevust hõlmatav etapp (Joint Session) – Kogemuslikud hinnangud

Varajases arendusprotsessis peaksid kasutajad kasutama simulatsioone ja prototüüpe, et saada aimu tulevasest lahendusest.


Jälgimismeetod täiendab uurimust konteksttipõhise toimimise faktidega ning võimaldab disaineril pöörata tähelepanu sellele, mida kasutajad ei pidanud oluliseks või ei osanud oma kirjeldustes välja tuua. Jälgimise läbiviimiseks mõeldud ülesanded saab eelnevalt paika panna, tuginedes uurimusest öpitule.

Ühistööetapi lõpus esitlevad disainerid vastavalt uurimusele ja jälgimistele tehtud esialgseid lahendusi – visualiseeringute, täissuuruses näidiste või osaliselt töötavate makettide näol. See annab kasutajale võimaluse avaldada nende kohta arvamust ning katsetada neid reaalses keskkonnas.

Kasutajakeskse disaini protsess ei kulge kunagi lineaarselt, ehk teisisõnu, iga läbitud etapi juurde tullakse mingil hetkel tagasi. Näiteks kui testimise käigus on leitud probleeme, ja tavaliselt nii ka juhtub, siis tuleb need ära lahendada. See tähendab, et disain peab olema vahetum: peab toimuma disaini, katsetuste ja hinnangute ringlus, ning seda nii sageli kui võimalik.[10]

Kasutajakeskse disaini protsess ei kulge kunagi lineaarselt, ehk teisisõnu, iga läbitud etapi juurde tullakse mingil hetkel tagasi. Näiteks kui testimise käigus on leitud probleeme, ja tavaliselt nii ka juhtub, siis tuleb need ära lahendada. See tähendab, et disain peab olema vahetum: peab toimuma disaini, katsetuste ja hinnangute ringlus, ning seda nii sageli kui võimalik.[10]

Kasutajakeskse disaini protsessi järgides on suurem tõenäosus jõuda tulemusteni, mis:

- on lihtsamad, arusaadavamad ja käepärased kasutada;
- on rahulolu pakkuvad ja stressivabad kasutada, seeläbi tõstes kasutaja elukvaliteeti;
- parandavad kasutaja produktiivsust ja toote käsitlemise efektiivsust.

Hoolimata eeldatavast suurest kasutegurist on kasutajakesksete uuringute läbiviimine väga ressursimahukas. Eriti siis, kui jäädakse truuks põhimõttele kaasata kasutaja läbi terve disainiprotsessi.[9]

Paljude kasutajakeskse disaini metodoloogiate aluseks on rahvusvaheline standard (ISO 13407: Human-centered design process). See standard iseloomustab üldist protsessi, kaasa arvatud kasutajakeskse disaini tegevusi läbi tootearenduse protsessi, kuid ei too välja konkreetseid meetodeid.[7]
9.3. Teenusedisain

Traditsiooniliselt pööratakse disaini rakendamisel väga suurt tähelepanu toodete ja keskkonade kujundamisele, teenused nende ümber ja sees pälvivad aga märkimisväärselt vähem aega ja ressursse. Kuid väga tihti on teenus loodava keskkonna või toote tegelik süda ning põhjus, mistõttu tuleks arendusprotsesside esmases fases faasis keskkondu just teenuse olemust kaardistamise ning analüüsimisele, võimalustes ja probleemide defineerimisele ning alles seejärel füüsiliste kokkupuutepunktide käsitlemisele. Sel põhjusel soovitame keskkonade arendajatel projektide kaasata ka teenusedisaini spetsialiste.

Teenusedisain tegeleb nagu teised disainivaldkonnad kvaliteedi ja efektiivsusega, kuid on veel muid olulisi aspekte, mida silmas pidada. Elamus on nendest üheks märksõnaks, aga kindlasti ka otstarve, kasutatavus, meeldivus jne.

Tänapäeval pakutakse teenuseid (nagu tooteid) enam ükshaavalt ja käsitööna, vaid “tööstuslikult” ehk oluline on pakutava elamuse efektiivne „paljundamine“. See asjaolu viib teenuse taristu, protseduuride, inimeste, teenuse kriiteriumide jmt süsteemsele väljatöötamisele, et tagada teenuse ühetaolline kvaliteet ning samas optimeerida kulud.

Süvendatult teenust analüüsides ning loomulikuliselt arendades saab protsessi tulemusena väga täpse ja sisuka lähteülesande keskkonna- või tootedisaini projektile, mis sobib ka riigihanke dokumentatsiooni osaks, aidates hankes pakkuja-tena osalejal mõista soovitud töö konteksti.


Inimeste, kogukondade ja organisatsioonide vahelised suhete suhted on dünümilised ja mõjutavad sotsiaalsel keskkonnal kõige tõhusa ja üldiselt edukama sotsiaalse keskkonna ja organisatsiooni disaini strateegia manufaktuuril, mis üks mõttest on teenusedisainile väga iseloomulik ning tagab projekti edukuse. Paraama teenuse loomine ja teostamine nõuab kogu ahela lahtimõtestamist, alates kliendi teenusevajaduse tekkimise hetkest kuni teenuse hilibebra mäletamiseni.
Kõige keskmes on ikkagi inimene, keda teenindatakse, kellele teenus on mõeldud. Seetõttu on väga oluline oma kliente ja kasutajaid paremini tundma õppida. Teenusdisaini sisend tuleb väga suurel määral disainiuuringutest, mis oma olemuselt on viimasel aastakümnel astunud traditsioonilistest disainiuuringutest pika sammu edasi. Täpsemalt on uuringu arenguid ning meetodeid käsitletud käesoleva peatüki kasutajakeskse disaini alalõigus.

Teenusdisaini puhul räägitakse palju kokkupuutepunktidest ehk neist kohtadest, kus klient kohtub teenusepakkujaga või teenusepakkuja poolt loodud füüsilise või virtuaalse keskkonna naga. Kuid kindlasti ei tohiks kokkupuutepunkte üle formaliseerida. Kokkupuutepunktid on keskkond, kus teenust pakutakse, ehk keha, kuid teenuse hing on peidus selles loos, mida kliendile teenuse käigus jutustatakse, selles elamuses, mis luuakse igale kliendile eraldi. Hea teenus sisaldab nii keha kui hinge.\[12\]
9.4. Sotsiaalne disain


Sotsiaalne disain partneriteks on üldjuhul avalik ja kolmas sektor ning kogukonnad. Tema eesmärgiks on aktiveerida kogukondi ja üksikisikuid, et realiseerida nende potentsiaali ühiskonnas ning kaasata neid muutuste esilekutsumisse.


Probleemide lahendamisel ja võimaluste avamisel kaasab sotsiaalne disain eri tasandil kogukondi, sest suuri muutusi ei saa ellu viia ülevalt alla juhtimise printsibil, vaid oluline on tekitada vajalik pinnas muutusteks võimalikult laiapõhjalisi. Kogukondade kaasamine juba probleemide ja võimaluste mõistmise faasis aitab tagada inimestes sügavama sideme loodava lahendusega ja nii ka selle edukama rakendamise.

Disainmõtlemist rakendatakse järjest enam sotsiaalse innovatsiooni ja kestva arengu projektides, et mõjutada paremaid elustiilivalikuid ja edendada kogukonna sidusust. Kaasates protsessi kodanikke ja kogukondi kui kriitilist ressurssi väljakutsete uurimisel ja innovatiivsete lahenduste leidmisel, suudab disain reorganiseerida igapäevaelu aspekte, tõsta nende kvaliteeti ja vähendada inimkonna tegevuse mõju keskkonnale.

Integreerudes haridusasutustesse, kogukonna tegemistesse ja administratiivsetesse üksustesse, suudavad multidist-siplinaarsed meeskonnad (sh disainerid) koostöös kohalike sidusgruppidega koos-disainida ja ellu viia mõjusaid tegevusplaane. Disain on sel puhul mehhanism, et maksimeerida erinevaid sisendeid, stimuleerida suutlikkust ja prototüüpida paremaid avalikke teenuseid, mida on võimalik kopeerida erinevates haldusüksustes.
9.5. Disainimeetodid ja tööriistad

Järgnevalt on vaatluse all mõned tööriistad, mida kaasaegses disainiprotsessis kasutatakse kasutajate eripärade arvestamiseks, kasutajakesksema tulemuse saavutamiseks ning eesmärkidega paremini sobivamate lahenduste leidmiseks. Valdavalt on tegemist olukorra kaardistamist ning analüüsimist soodustavate töövahenditega.

**PERSOONAD**


Isikukirjeldused võiks sisaldata inimese üldisest taustast, elustiilist, käitumisest, oskusest ja eesmärkidest, ajakasutusest, külastatavateskohtades, iseloomust, tarbijaharjumustest. Persoonade loomisele eelneb põhjalik tutvumine kasutajate olemuse, vajaduste ja soovidega ning nende pinnalt üldistustele tegemine. Kasutajad on väga erinevad ning seetõttu luuakse tavaliselt mitme persoonaseaduse, kuna traditsioonilised personaadid ei sobi kiiremates arendusprotsessides.

Isikukirjeldused võiks sisaldata inimese üldisest taustast, elustiilist, käitumisest, oskusest ja eesmärkidest, ajakasutusest, külastatavates kohtades, iseloomust, tarbijaharjumustest. Persoonade loomisele eelneb põhjalik tutvumine kasutajate olemuse, vajaduste ja soovidega ning nende pinnalt üldistustele tegemine. Kasutajad on väga erinevad ning seetõttu luuakse tavaliselt mitme persoonaseaduse, kuna traditsioonilised personaadid ei sobi kiiremates arendusprotsessides.

Isikukirjeldused võiks sisaldata inimese üldisest taustast, elustiilist, käitumisest, oskusest ja eesmärkidest, ajakasutusest, külastatavates kohtades, iseloomust, tarbijaharjumustest. Persoonade loomisele eelneb põhjalik tutvumine kasutajate olemuse, vajaduste ja soovidega ning nende pinnalt üldistustele tegemine. Kasutajad on väga erinevad ning seetõttu luuakse tavaliselt mitme persoonaseaduse, kuna traditsioonilised personaadid ei sobi kiiremates arendusprotsessides.

Isikukirjeldused võiks sisaldata inimese üldisest taustast, elustiilist, käitumisest, oskusest ja eesmärkidest, ajakasutusest, külastatavates kohtades, iseloomust, tarbijaharjumustest. Persoonade loomisele eelneb põhjalik tutvumine kasutajate olemuse, vajaduste ja soovidega ning nende pinnalt üldistustele tegemine. Kasutajad on väga erinevad ning seetõttu luuakse tavaliselt mitme persoonaseaduse, kuna traditsioonilised personaadid ei sobi kiiremates arendusprotsessides.
Käesoleva juhendmaterjalil loomisega uuringumeeskond kuus persoonat, kes kirjeldavad eri tüüpi probleeme ja võimeid keskkonnas hakkamasamisel. Loodud persoonaid on tutvustatud elukeskkonna erinevaid kasutajaid käsitlevates peatükistes. Töö käigus kasutati neid kuut persoonat erinevate teekondade ja avalike teenuste analüüsimisel ning tuvastati nende kõigi erinev hakkamasamine ning erinevad ootused sujuvaks, võimalikult iseseisvaks ning probleemivabaks toimetulekus.

**KONTEKSTISTSENAARIUMID**

Stsenaariumid aitavad kujundada kasutaja kogemust ja elamu kogu teenuse või teekonna ulatuses ja arvesse võtta teekonnel ettevõtte eri tüüpi momente ning aspekte. Kui persoonad annavad sihtgrupi(d), kellele ja milleks disainitakse, siis stsenaariumid pakuvad lahendamiseks päriselu momente ning konteksti, milles kasutajad tegutsevad. Stsenaariumide abil saab läbi mängida, kuidas kasutaja käituvad tulevikus loodava uue teenuse, toote või keskkonna tingimustes.

Ühe disainiprojekti raames võib luua mitmeid stsenaariumi, vajalike stsenaariumide hulk sõltub projektide võivuse võtta teekonnal ettevõtte eri tüüpi momente ning aspekte. Kui persoonad annavad sihtgruppi(d), kellele ja milleks disainitakse, siis stsenaariumid pakuvad lahendamiseks päriselu momente ning konteksti, milles kasutajad tegutsevad. Stsenaariumide abil saab läbi mängida, kuidas kasutaja käituvad tulevikus loodava uue teenuse, toote või keskkonna tingimustes.


Stsenaariumi luues tuleb läbi mõelda, kuidas ja kui tihti inimesed teenust/toodet/keskkonna kasutavad ning kuidas see aitab neid igapäevatoimetustes. Stsenaariumi loomisel ilmned probleemid kohas, mida tuleks disainiprotsessi raames parandada või sujuvamaks muuta.
Kaasava elukeskkonna planeerimisel aitab stsenaariumide koostamine arvestada eri kasutajagruppide vajadusi erinevates situatsioonides toimetulekul. Soovitame stsenaariumide kasutada koos juhendmaterjali raames loodud persoonadega.

**BLUEPRINT**

Blueprint on oma algases tähenduses jooniste või kavandite kogum, projektdokumentatsioon. Teenusedisaini arengu raames on termin leidnud uue tähenduse teenusearenduses kasutatava spetsiaalse tööriista tähendamiseks. Teenuse blueprint aitab teenuse olemust täpselt määratleda ning tuvastada võimalikke probleeme varases staadiumis. Kui traditsioonilises tähenduses blueprindid dokumenteerisid kohta ehk füüsilist ruumi või objekti, siis teenuse blueprint dokumenteerib aega ning selle jooksul juhtuvaid tegevusi, kuid ka kokkupuutepunktide füüsilise keskkonnaga.

Teenuse blueprindid on elavad, paindlikud dokumendid ning üldjuhul loodud koostöös nii paljude huvi- või sidusgruppidega kui võimalik. Teenuse blueprint on erinevaid elemente ja tervikut tõestada, teostada ja tõös hoida. See baseerub graafilisel tehnikal, mis näitab, kuidas teenuseprotsess toimib nii kasutajale nähtavas kui varajatud osas: kõik kokkupuutepunktid ja „tagatoo“ protsessid dokumenteeritakse ja ühtlustatakse kasutaja kogemusega.

PROTOTÜÜBID

Parema tulemuse saavutamiseks valmistatakse disainiprojekti raames mimeid prototüüpe, millest esimesed on kontseptsiooni katsetamiseks ning esmamulje saamiseks väga algelised ning üldjuhul valmistatud käepärasest odavatest materjalidest ja esemetest. Iga järgneva prototüübiga täpsestakse lahenduse ja selle katsetamine kasutusolukordades võimaldab sisse viia uusi idee ja nii tulemust täiustada. Prototüüp võib aidata ka mõista lahenduse mõttevõtmist. Kiire ja lihtne prototüüvimine käib käes uute ideede genereerimisega, nende katsetamise ja täiustamisega.


Kaasava elukeskkonna ja teenuste disainimisel on ka prototüüpideta tegemisel ning katsetamisel oluline roll sobiva lõpptulemuse saavutamiseks ning ebavajalike barjääride tuvatamiseks ning likvideerimiseks.
9.6. Kaasava disaini tasuvus

Kaasava või universaalse disaini rakendamist peetakse üldjuhul kallimaks kui vaid n-ö keskmiselt kasutjale keskendunud lahenduste väljatöötamist (vörreldav masstootmisega). Avalik sektor on Eestis kohustatud kohtlema kõiki võrdselt ning looma kõigile võrdseid võimalusi.

Kui algne keskkond või loodud teenus ei ole mõnele ühiskonna-nagrupile käitluslik, tuleb selleks teha vastavaid kohandusi või pakkuda lisateenust. Sel hetkel võib ilmneda, et vajalikud kohandustööd lähevad märkimisväärselt kallimaks kui kohe kõigi ühiskonnaliikmeid arvestava lahenduse loomine. Kuidas neid kulutusi ette näha ning hinnata?

Disainiprojekti investeeringu tulususe mõõtmine ning ka kõigi kulude eelarvestamine ei ole lihtne. Peamised näited selles vallas illustreerivad projekte, kus disain on olnud üks oluliselt kallimaks kui hohe kõiki ühiskonnaliikmeid arvestava lahenduse loomine. Kuidas neid kulutusi ette näha ning hinnata?

Enne disainiprojekti käivitamist tuleb määrata kõik eesmääratud tegevuse eesmärgid. Ühekse neist on projektis tasuvuse mõõtmine, mis võib ja tuleb sätestada kolm erinevat asja: investeeringu tasuvus, tasuvuse mõõtmine, keskkondlik tasuvus (kogu toote või keskkonna elukaare tähendus). Sotsiaalne mõju jne. Ta-tud eesmärgid ja mõõtmiskriteeriumid võimaldavad projekti arenedes pidevalt hoida projekti n-ö õigel rajal ning mõota vajaduse korral erinevate otsuste mõju tulemusel.

Tasuvust võib mõõta nii „kõvades“ (müüginumbrid, turuosa, klientide hulk jnd) kui „pehmistes“ väärtustes (bränditeadlikkus, avalik arvamus, töötajaskonna moraal jnd). Enamasti mõõdetakse erinevate väärtuste kombinatsiooni. Kui need eesmärgid väärtuste muutmiseks on seatud projekti alguses, siis toimub mõõtmine lähteülesandes seatud eesmärke ja tulemuste kõrveltades.

Pehmeid väärtusi on raske kvantitatiivselt hinnata, kuid neile mõõtmiseks kasutatakse uuringuid enne ja pärast projekti. Eriti neil puhkudel peaks mõõdetav olema enne projektis algust selge, et oleks võimalik vastav uuring õigel ajal teostada. Design Council toob oma temaatilises artiklis välja lühikese nimekirja võimalikest „kasudest“, mida disaini tellija võib pidada eduka projekti eesmärkideks:

- suhtumise muutus brändi uuenduse tõttu;
- rohkem külalastaja;
- klientide tähendamise võitmine pikemaks ajaks;
- selgem informatsiooni kasutajatele mõeldud blankettidel ja reklamaametel, mis tõstet ühehene klientide telefonikõnedele hulk;

Kaasava elukeskkonna juhendmaterjal Disainimeetodid
Kommertsprojektide puhul on peamine eesmärk suurenud läbimüük või turuosa kasv. Kuid avalik sektor võib soo-vida mõne teema paremat avalikku mõistmist, mis ei pruugi anda otsest rahalist kasumit. Universaalse või kaasava disaini printsiipe järgides suurendatakse automaatselt sihtgrupi suurust ehk võimalike kasutajate hulka ning sellest tulenevalt suureneb eelduslikult ka turuosa ja/või läbimüük.

Toodete ja keskkondade lõpliku kvaliteeti saab hinnata alles pärast valmimist. Siis on võimalik paranua ja kohendusi sisse viia suur kulutus tehes või elemente (tihti kogu keskkonda arvestades sobimatuid) lisates. Kaasates disainimeeskonna jubaarendusprotsesside algfaasis ning arvestades loomisprotsessides kasutajatega, on võimalik toodete, teenuste ja keskkondade sobivust, kvaliteeti ning ka tasuvust hinnata disainiprojekti eri staadiumides. Neid meetodeid rakendades on võimalik suunata arendustegevust vastavalt soovitud eesmärgile enne lõpuleviimist ning hoida märkimisväärset kokku võimalike parendustööde arvelt.

Oluline on informeerida kõigist eelarvelistest ja teistest projekti heaks planeeritud ressurssidest kogu meeskonda võimalikult algstaadiumis. Pidevad disainimeeskonna ja tellija arutelud projekti edenemise ning arengusuundade üle vähendavad märkimisväärset ebameeldivaid üllatusi projekti ootamatult suurenevate kulude osas.

Cambridge’i Ülikoolis loodud kaasava disaini tööriistakastist (Inclusive design toolkit) leiab haruldase juhendmaterjali disainiprojekti äriliste ja teiste eesmärkide seadmiseks, projekti juhtimiseks ning kulutuste ja tulususe arvutamiseks. Materjal arvestab põhjalikult kaasava disaini eripärasid ja selle võimalikke mõjusid projekti eri aspektidele. Tööriista kasutamise teeb projektijuhtidele mugavaks selle ülesehitus levinud arvutiprogrammi Excel baasil.
9.7. Standardid

1. ISO 20282-1:2006, Ease of operation of everyday products – Part 1: Design requirements for context of use and user characteristics


5. EVS-EN ISO 24500:2010 Ergonomics – Accessible design – Auditory signals for consumer products


7. ISO 9241-11:1998 Ergonomic requirements for office work with visual display terminals (VDTs) – Part 11: Guidance on usability
9.8. Bibliograafia


(26.02.2012)

22. Return on design investment and why everyone should measure it. – Design Council UK, http://www.designcouncil.org.uk/about-design/Measuring-design/
(26.02.2012)

(26.02.2012)
10. Abivahendid elukeskkonna hindamiseks
Abivahendi kasutamise eesmärgiks on anda võimalus kasutajatele ja haldajatele kirjeldada ja hinnata süsteemiselt kaasava elukeskkonna iseloomu ja sobivust erinevatele kasutajagruppidele, leida parandamist vajavad nähtused ja asjaolud ning töötada välja ettepanekud nende parandamiseks. Tulemuseks on põhjendatud meetmete loetelu, mis on olukorra parandamiseks vajalike vahendite taotlemise aluseks.

Allpool on toodud põhilised hindamist vajavad aspektid, mida võib hinnata erineval viisil:

1. **kirjeldus ja kvantitatiivsed näitajad**, nende võrdlemine standardite ja hea tavaga;


*Hindamisviise on otstarbekas kasutada kombineeritult.*
ÜLESEHITUS TEEMADE KAUPA

Üldiseloomustus
- Kirjeldatava objekti iseloom ja üldised näitajad
- Lähikonnas paiknevate objektide ja seoste kirjeldus
  » Olulised objektid
  » Ruumistruktuur
  » Ühendusteed ja seosed
- Võimalikud liikumisvahendid
  » Liikumikeskonnas üldiseloomustus
  » Ühistransport
  » Eritransport
  » Jalg- ja jalgrattateed
  » Parkimiskorraldus

Üksikasjalikult kirjeldatavad teemad
- Ligipääs
  » Ühendus avaliku juurdepääsuga, nt tänava, kõnnitee või transpordivahenditega
  » Sissepääsu paiknemine
  » Ühenduse juurde liikumisvägi
  » Uks
  » Visuaalsed tähised välisruumis
  » Üleminekud eri tasandite vahel välisruumis
  » Rambid, kaldeed, trepid ja astmed
  » Käispuud ja kaitsepiirded
  » Taktiilsed teejuhid välisruumis
- Teave
  » Külalastajate vastuvõtt ja teenindamine

» Ehitist tutvustav skeem
» Tähised ja suunavad abivahendid
» Teekonna ja paiknemise ülevaatluskus

- Liikumisteed
  » Taktiilsed teejuhid siseruumis
  » Pöörderuum
  » Liikumistee laius
  » Üleminekute markeerimine
  » Pinnakate ja tekstuur

- Sisseseade
  » Mööbel, seadmete ja manuste kõrgus
  » Istmed ja laudad
  » Põleruum ratastoolil istujale

- Lift ja abiteenused
  » Lift
  » Parkimine ja juurdepääs
  » Tualett, pesemisvõimalused, imikuhooldus
  » Kasutuskorraldus

- Kasutajate olemasolu ja ulatus
  » Mööbel ja sisseseade
  » Ehitise kasutuskorraldus
  » Ehitise korrahoid ja hooldus
  » Täiendus- ja muudatusvõimalused

- Kasutajate küsitlus
  » Küsitluse tulemused (hinnangute kokkuvõte ja analüüs)
  » Kasutajate kommentaarid

- Kokkuvõte
  » Parendamisettepanekud
  » Muud olulised tähemärkused
  » Jätkutugevus

Kaasava elukeskkonna juhendmaterjal 335 Abivahend hindamiseks
10.2. Kasutaja teekaart

Kasutaja teekaart on käesoleva juhendmaterjali koostamisel valminud tööriist keskkondade ja teenuste hindamiseks erinevate kasutajate vaatevinklist ja kasutuskogemusest lähtuvalt. Teekaardi abil saab analüüsida nii alles loomisel olevaid kui juba loodud keskkondade ja neis pakutavate teenuste ligipääsetavust ning kasutusmugavust.

Võimalikult erinevate kasutajate vajaduste hindamiseks loodi juhendmaterjali ettevalmistusfaasis kuus tüüppärit kasutajad, kelle füüsilised, vaimsed, käitusmuslikud ja elukorralduslikud aspektid on täpsemalt kirjeldatud peatükis elukeskkonna erinevad kasutajad. Kõiki kaasava elukeskkonna analüüsima on oluline arvestada võimalikult erinevate vajadustega inimesi, kes avalikke teenuseid ja keskkondi tarbivad. Loodud kuus persoonat püüavad seda laia spektrit katta võimalikke äärmusi arvestades (alati on võimalus persoonasid juurde luua, kuid töö mahukuse ja arusaadavuse huvides püüdis töögrupp jääda võimalikult kompaktseks).

Kasutaja teekaart keskendub läbitavale teekonnale, selles sisalduvatele tegevustele, füüsilistele kokkupuutepunktidele, kuluval ajale ning saadud elamusele. Kui tabeli ülemine osa keskendub keskmise, terve ja tugeva inimese teekonnale, siis alumine osa lähtub kasutajate eripäradest ning neist tulenevatest vajadustest. Enne teekaardi kasutamist on oluline põhjalikult tutvuda persoonade eluolu kirjeldustega.

Meeskonnaliikmed Kasutaja teekaarti täitmas. Melioranski, R.-H., Tallinn, 2011

Ainult sel viisil on võimalik hindamisel arvestada konkreetset inimese kõiki vajadusi ja ootusi.

Tööriist on vormistatud tabelina, mida saab välja printida maastikuformaadis. Kõige väiksem tööks sobilik on A3-suurus, kuid mugavamad on suuremad formaadid. Töögrupp ise kasutas A1-formaaeti. Tabelisse võib infot ots peale kirjutada, kuid soovitav on kasutada väikseid kleepribaga märkme-pabereid (Post-It), et uute aspektide ilmnemisel või paremate lahenduste leidmisel saaks neid ümber paigutada.


Tegevuse ja kokkupuutepunktide analüüsimisel tuleks indi- katiivselt määratleda ka aeg, mis selle tegevuse sooritami- seks kulub. Olemasolevat keskkonda hinnates saab tegevuste toimumist jälgides kuluvat aega täpsema tulemuse saamiseks mõõta.


Need neli etappi annavad teadmise, kuidas keskmine inimene teekonda läbib või teenust tarbib. Kaasava elukeskkonna hindamise kontekstis on oluline vaadata erinevate võime ja võimalustega inimgruppide teenuse tarbimise suutlikkust. Järgevalt tuleks analüüsijatel kehastuda järjest kõigiks
loodud persoonadeks ning läbida sama teekond või kasutada sama teenust teise inimesena. Analüüsi lähtekohaks on tabeli ülaossa kirja pandud tegevuste loetelu, persoona juurde tuleb lisada kõigi nende tegevuste sooritamise eripärased asjaolud.

Näiteks Reet peab tellima kogu perega liikumiseks suurema takso, sest tavalises autos on vaid viis kohta, kuid tavataksos on lisaks juhile vaid neli kohta. Lisaks peab kohe uurima turvatoolide olemasolu taksoos, sest isiklike kaasa võttes pole neid sihtkohta jõudes kuhugi panna. Ajalises plaanis võtab nii laste riitamine kui taksosse sisenemine märkimisväärselt kauem aega.

Kristiina aga teavitab kohe taksot tellides oma nägemisprob-leemidest ning kirjeldab enda väljanägemist, et taksojuht leiaks Kristiina ise üles. Kristiina eelistab kollast taksot, sest ta on väike nägemisjääk, mis aitab suurte pindade hallist ümbrusest eristada.

Iga persoon on isiksus ning nad kogevad erinevaid tundeid erinevaid tegevusi sooritades. Kui füüsiliselt terve inimese on taksosse sisseistumine tavaliselt puhandanud, siis Eerole on see etapp palju kompliteeritud. Takso peab olema parkinud avaras ja ligipääsetavas kohas, Eero peab saama end taksoistmele libistada, ratastooli kokku pakkida jne. Kogu protseduur võtab aega ning nõuab füüsilist pingutust.

Kui kõik kuus persoonat on läbi analüüsitud, on aeg teha kõigi tegevusetappide lõikes kokkuvõtteid ja nende põhjal parandusettepanekuid, arvestades sealjuures erinevate kasutajate poolt väljatoodud. Parandusettepanekuid tasuks uuesti analüüsida: kas need ikka teevad kõigi kasutajate elu mugavaks? Kuidas saaks veel paremini? Kas nende uuenduste tulemusel muutub kasutajate meelega positiivsemaks?

Materjali lõpus, lisades, on toodud kaheksa hüpoteetilise teekonna analüüs, mis selgitab näitlikult tööriista kasutamist ning aitab mõista nii erinevate kasutajate vajadusi kui ka iseärasusi.
11. Kokkuvõte
Valminud juhendmaterjali põhifookuses on ehitatud keskkonna, selle kasutamise võimaluste ning selles pakutavate teenuste planeerimine ja kujundamine võimalikult paljude inimeste vajadustest lähtudes. Samas on keskkonna valimine vaid eelprotsess selle kasutamisele, seal elamisele, töötamisele ja liikumisele.


Kolmas oluline eeldus kogu keskkonna kvaliteetsemaks arendamisel on seotud kogu planeerimisprotsessi süsteemse ja terviklikkuse juurutamisega. Senine praktika lähtub kruntidest ja omandist ning kahe kinnistu püri toimuv ei ole kellegi vastutusalas. Ometi võib just sinna jääv teekatte muutus põhjustada teekäijatele ebamugavusi, mõne abivahendiga liikumist võib ootamatute trepiastmete tõttu seal ka lõppeda. Seega soovitame rohkem arvestada kogu süsteemi kui terviku toimimist ning kooskõlastada oma tegevused naabrite omadega.

Juhendmaterjali meeskonna poolt soovime indu ja tahet arvestada võimalikult paljude erinevate inimestega meie ümber ning loodame, et leiate koondatud juhistest uusi, inspireerivaid ja loovaid ideid elukeskkondade kujundamisel.

Suhtumisega on otseselt seotud ka elukeskkonna hooldamise ja korrashoiuga seonduv. Kahjuks jääb vähesed vaid ehitamise- sest ja ehitiste valmimisest, et saavutada kõigile ligipääsetav ja mugav lahendus. Kui invaparkimisplatsi kasutatakse talvisel ajal lume ladustamiseks või sissepääsuni viivalt panduselt
Kontakt •

**Eesti Arhitektide Liit**
Lai 31, 10133 Tallinn
telefon (+372) 6117430
faks: (+372) 64117431
info@arhliit.ee

**Astangu Kutserehabilitatsiooni Keskus**
Astangu 27, 13519 Tallinn
telefon (+372) 687 7231
faks (+372) 687 7200
astangu@astangu.ee
12. Lisad
**EMOTSION**

**TEGEVUS**


3. Autode juhtimisest ei ole võimalik sõidetavatele liikumisvõimalusi parandada.


5. Autode juhtimisest ei ole võimalik sõidetavatele liikumisvõimalusi parandada.


7. Autode juhtimisest ei ole võimalik sõidetavatele liikumisvõimalusi parandada.


**KOJUPEALUSESTPUNKTID**

**KESKKONNANÄG**

1. Mise on võimalik autode juhtimise mudiselt parandada. Praktiline koostöö ja kasutusliku korraldusega võib autode juhtimisest oluliselt parema tulemusena saavutada.

2. Autode juhtimisest ei ole võimalik sõidetavatele liikumisvõimalusi parandada.


4. Autode juhtimisest ei ole võimalik sõidetavatele liikumisvõimalusi parandada.


6. Autode juhtimisest ei ole võimalik sõidetavatele liikumisvõimalusi parandada.


8. Autode juhtimisest ei ole võimalik sõidetavatele liikumisvõimalusi parandada.


**EMOTSIION**

**TEGEVUSEKS KULUNUD AEG**

1 min 2 min 0,5 min 1 min 15 sek 1 min 15 min 1 min 2 min 2 min

**EMOTSIION**

**KOHE TOOMDI**

**KOHE TOOMDI**


3. Autode juhtimisest ei ole võimalik sõidetavatele liikumisvõimalusi parandada.


5. Autode juhtimisest ei ole võimalik sõidetavatele liikumisvõimalusi parandada.


7. Autode juhtimisest ei ole võimalik sõidetavatele liikumisvõimalusi parandada.


EMOTSIOON

EMOTSIOON

[18x636]EMOTSIOON

[23x640]EMOTSIOON

[23x58]Mis oleks teinud kulgemise mugavamaks ning

[23x67]Millest tundsite puudust?

PARANDUSETTEPANEK

[23x699]TEGEVUSEKS KULUNUD AEG

[23x743]KOKKUPUUTEPUNKTID KESSKONNAS

[23x811]TEEKOND: "BUSSIGA"

või valge kepiga

ning liigub saatjaga

liikumispuudega (ratastoolis)

EERO,

vene emakeel

[218x201]Arvuti kõnesünte

[218x264]Tuleb varakult

[218x334]ning ukse avamise

lävepakud, trepid.

Probleemiks on

bussidega.

ma ei orienteeru

kättesaadav ning

ga üldse. Tervena

ras ei sõida bussi

kuskilt. Ei vaata

Lastega bussile

kutega.

kui ka infovoldi

Bussigraafkute

- 

- 

- 

- 

[272x787]Bussipeatus

[273x102]-

-

-

-

[273x86]2

[278x425]orienteerun väikest

trepikoda tunnen

astmest kuni viimase

kud.

Braille' tähistused

nuppude juures ka

äärekividest vaba.

Kaldenurgad (topelt

hetkeseisund, tee

Probleemiks võib olla

bussidega.

mõõda.

Liive rajas rinde,

jah, tõhus.

Kásia ei ohtuda

niisutud.

Kõnnitee, värav

- 

- 

- 

- 

[292x133]Juhtplaadid maas aitaksid

Pinnakatte märgistus.

Paviljonis. Sõidugraafk

tasa.

3

[361x239]-

-

-

-

[361x353]-

-

-

-

[377x150]jooksu ulatuses. Soo

kõnnitee, värav

- 

- 

- 

- 

[392x537]ja reklaamid teel segavad

olla kogu peatuse ulatuses

Juhtplaadid maas aitaksid

Pinnakatte märgistus.

Paviljonis. Sõidugraafk

tasa.

3

[463x94]-

-

-

-

[465x778]Laternapostid ei tohi

jal äärekivide vahel kald

kaasreisijatele jalgu jääda. Ukse

istet, eelistan istuda, et mitte

esiuksest, et juht näeks mind ja

kaardisüsteem. Võõras

jääda valgustiposti vm

uks ei tohi peatudes

äärekivi, et lihtsamini

kaasreisijatele. Ukse

öö tuleb valgustiposti

ja õhkpadja tühjaks laskma.

Sõidugraafk

kiirendus või pidurda

nõrgema seljaga ratas

saama kasutada. Kaaluda

peaks olema jälgitav.

Häälteavitus on väga

Réle kallendried. Hääled

 ja õhkontroll on esialduslikk.

[497x700]nurjumisest käesolevad

üleminen kaalude suurused

ja €/100 kg eest.

Hea kontakt, et

sõidukite kõnnitee, värav

- 

- 

- 

- 

[511x537]Jos vajutab tõuket konvekselt

hajusse ja jääb aeg-

massa.

Kõnnitee, värav

- 

- 

- 

- 

[563x69]info madalamal – kätte

lahkunud. Buss peab peatuses

vahepeal kasutada. Peab

peatuma võima

ja õhkpadja tühjaks laskma.

Tagumine buss ei või enne pea

võimalikult äärekivi lähedal

Bussijuht peab peatuma

võima

ja õhkpadja tühjaks laskma.

Tagumine buss ei või enne pea

võimalikult äärekivi lähedal

Bussijuht peab peatuma

võima

ja õhkpadja tühjaks laskma.

Tagumine buss ei või enne pea

võimalikult äärekivi lähedal

Bussijuht peab peatuma

võima

ja õhkpadja tühjaks laskma.

Tagumine buss ei või enne pea

võimalikult äärekivi lähedal

Bussijuht peab peatuma

võima

ja õhkpadja tühjaks laskma.

Tagumine buss ei või enne pea

võimalikult äärekivi lähedal

Bussijuht peab peatuma

võima

ja õhkpadja tühjaks laskma.

Tagumine buss ei või enne pea

võimalikult äärekivi lähedal

Bussijuht peab peatuma

võima

ja õhkpadja tühjaks laskma.

Tagumine buss ei või enne pea

võimalikult äärekivi lähedal

Bussijuht peab peatuma

võima

ja õhkpadja tühjaks laskma.

Tagumine buss ei või enne pea

võimalikult äärekivi lähedal

Bussijuht peab peatuma

võima

ja õhkpadja tühjaks laskma.
ERKO

Kedra vastan kella, sealt ühe, lahekse treptuit, allas kella, saetakse, taha tanavalad.

Liigut-üksusid

Parkide ja liikude poolt, sügised, neged, aasikrid, puitlumõned, elustusmõned, haljastus, kirjanduskwartal

Liikendutead, sügised, lastele, lavastavateid mõned, taseseemmel, ülesseemmel

Antseminut, sügised, valgustatud, lavastavateid mõned

Kell, uks, trepila, valgusfoori piiksud.

* * * * *

ELVI

Praised peaks olema valgustatud.

Korras peaks olema. Auk ja erinev kõrgus, mis peaks olema. Osa tulla olla.

Aitum ei tahe saada ja vanalinnas on vana tsao.

Liigup luues või sildit, mida ei ole. Osa tulla olla.

Pihulu teekonda ta hakanud valgustatud.


Treppidesse või valge kepiga

KRISTIINA, ning liigub saatjaga

EERO, alla tõstmisel.

kahe inimese abi trepist ukses avamise kergus.

Treppidel vajadus elustusmõned.


Võimalus ise juhtida.

* * * * *

MARTIN, vaatamist ja lihtsamad põgenejad (ratatoolides) ning liigub sajakaja

Pikaal lavisel aastal.

Ooline on ühtla valgus.

Võimalus ise juhtida. Võimalus ise juhtida

Uue aega leida!

Võimalus ise juhtida. Võimalus ise juhtida

MULLUS

Üksiklikku ja liiga laialased kõnniteed.

Valgustus punktide parandamine

Jõuan maja ette, astun läbi, kõnniteet või vanalinn.

PARANDUSETTEPAKEKUD

Millega tundide puudet Rand on seda tegud, kuid kaalude mõjumaks ning seadmete muutumaks?

Uue aega mõjumaks, madalamaks või üldse

Liigup luues või sildit, mida ei ole. Osa tulla olla.

Liigup luues või sildit, mida ei ole. Osa tulla olla.
Auta parkimu või jookseb valgusega ratastoolis. VAHENDATE ASUSTUS

Mond värvi liikumispuue ja sise saada. Nüüd on juba 3 viker laual.

Võiksid maille avaldada, et mööda laual. Anda laiale jõudvad väikelased.

Jõuab ise liikumispuue.

Liikumispuue peab olema vaid setiseks ja rõhutada. Kui kodenaotsus on, peab olema lihtne uusi toodetega seadistada.

Peab rõhutada, et kodetõrje peab olema lootustlik, et kodu ei maha saada.

Kodumajandus on ohtlik! Peab lihtsalt aadressi olla, et tõrke ei saa ebaõige peale jääda.

Lapsed on ohtlikud! Peab olema võimalik, et kodumeister või teenindajad saaksid aga laste lastu ja tõrkepaigutada.

KLĀSĪGIKOSALU BEZPIEČIE

Parandus teatuse ja tõrkepaigutus, kui võimalik. Kindlasti peab olema lihtsalt aadressi olla, et tõrke ei saa ebaõige peale jääda.

LIKVIDAATIJA

Peab rõhutada, et kodetõrje peab olema lootustlik, et kodu ei maha saada.

Kodumajandus on ohtlik! Peab lihtsalt aadressi olla, et tõrke ei saa ebaõige peale jääda.

Lapsed on ohtlikud! Peab olema võimalik, et kodumeister või teenindajad saaksid aga laste lastu ja tõrkepaigutada.

KLĀSĪGIKOSALU BEZPIEČIE

Parandus teatuse ja tõrkepaigutus, kui võimalik. Kindlasti peab olema lihtsalt aadressi olla, et tõrke ei saa ebaõige peale jääda.

LIKVIDAATIJA
EMOTSION

REETO,
Siia anka suuremaine 5 väälikupa emo
Avar üks, kaldene ukseni kui prinits on maos, muid puurkikse, sise sea ved ka pika rõhugi mööda ning vastik on.
Ararat nauad/reiald/see polehald, lihtne, jee lihtsasti peab ja on sõbralik.
Vastume siis hindu kui ka käepoolt kausist ja kõik kinni seega. Tohuv on stildluskuse ning ära lõhineks olu, kes saab infot kuski muud.
Lastele on see autotum peaaegu 5 sani sad. Laste saavad sõidukirja ise võtta.
Ootamatumad ja liikumisehinnad kaasas ja liikumise abivahendin.
Lastele pole jaoks see vasta tohib, saab maksta, ega ei ulata. Otsuk aid kahtluskavamater.
Müün on palju ülest ning jeenemine eriti seega. Samal ajal tuleb veel lastel võtta veeid hind.
Kahel pole kuri on rääkis halvaks, et üksed avastusi ümberõidult põleti. Lapsed kõvasti nad maha ku vaatame üle messinud, kui lapsed on auton, mitte vaidüldi kõega.

ELVI, namsipensionär
Selge ja lihtne naisesõus. See ühe ei tohki olla. Kõik on muge toodetud, ega kannel, kassamad on saad ja sellega jäälas.
Teen, kui asjad on. On see uue puhul kui: stildluskuse ja vabalt väälikupa olu deees saab kaasal kuski.
Otsin seadmest kaupa, kuid ootan, et see laske väälikupa 11000. Õieldas üks kui ka parem tuleb tavamaal toonitud.
Kui minu seg tuleb, siis tahan kõige väälikupa ise muud peaaegu. Samas kaupa võiks olla, mida kõige kattamata.
Kohati on maja/see liiketõuhik esite positiivsete 1001. Lahkusa pika käega, sellega, et see kõige olevat puudut.

JELENA,
lihtsam liikumisega
Võta kõik pois harva. Kui lahen, siis ei loo kõige kõrnav, veel kõige isegi nende hakanama. Ei tohik osa maa ega isegi pärit.
See on kõige kiirus. Üksite on osalise üles, et see saab saada hall. Kõik on kõige kattamata.
Kui sees kuts uju üksite, ei saa kõik käitata.
Saajatu astutab.
Mis saab saaja tõi vana ise maas. Kaajad toob kõik isikult.
Saaja astutab kaupa. Kui ma kuulaks käsitsevad kõik kontorit, siis saab see paremini hakkama.
Saajatu astutab. Lihtsalt atest sada.
Saaja astutab.
Saaja astutab.
MÄTTIN,
öönägemisega liikumisepoe (trestatoolis) ning liigab vaskejaga
Hea varem, koska kõige koolitamata jõud.
Saajatu astutab. Turvev vabas ja peaaegu ise.
Saajatu astutab. Peab ole suu, kus ei kõige olema kõigi.
Saajatu astutab. Kursuse põhjal saadub see.

KRISTIINA,
vaepoegia, liigub koera/vaatejõuga
Voab suureks neid, siis on tõeklus.
Heavanaid hõbe, peaaegu seadmete ka madalamini astut.
Täpselt ühtest.
Saajatu astutab. Turvev vabas ja peaaegu ise.
Saajatu astutab. Peab ole suu, kus ei kõige olema kõigi.

EERO,
sejärvepoe (trestatoolis) liikлина, üldised ise autoga
Infotee pesa olema praeval midagi. Kui tur vastanead on raiul, võib tooteid liikumisega liiga kaugeks, isegi väikseks, vähem kui käe üheks.
Korv kaabal paneb üksite. Kõige rõõmsalt vaan tuuraga suule punane umbra 1100, kui paineb umbra 1100, kui paineb umbra.
Korv kaabal paneb üksite. Kõige rõõmsalt vaan tuuraga suule punane umbra 1100, kui paineb umbra.
Korv kaabal paneb üksite. Kõige rõõmsalt vaan tuuraga suule punane umbra 1100, kui paineb umbra.
Korv kaabal paneb üksite. Kõige rõõmsalt vaan tuuraga suule punane umbra 1100, kui paineb umbra.
Korv kaabal paneb üksite. Kõige rõõmsalt vaan tuuraga suule punane umbra 1100, kui paineb umbra.
Korv kaabal paneb üksite. Kõige rõõmsalt vaan tuuraga suule punane umbra 1100, kui paineb umbra.
Korv kaabal paneb üksite. Kõige rõõmsalt vaan tuuraga suule punane umbra 1100, kui paineb umbra.

MÄRTIN,
vaapja, liikumise seisumispea (trestatoolis) ning liigub vaskejaga
Hea, kui õhul sooje ja lõhikus.
Saajatu astutab. Turvev vabas ja peaaegu ise.
Saajatu astutab. Peab ole suu, kus ei kõige olema kõigi.

KRISTIINA,
vaapja, liikub koera/vaatejõuga
Hea, kui õhul sooje ja lõhikus.
Saajatu astutab. Turvev vabas ja peaaegu ise.
Saajatu astutab. Peab ole suu, kus ei kõige olema kõigi.

PARANDUSETTEPLANUK
Mida küllots aadelda! Mis võiks teadud julgusemame muut saama ning muutamaks?
Hea, kui õhul sooje ja lõhikus.
Saajatu astutab. Turvev vabas ja peaaegu ise.
Saajatu astutab. Peab ole suu, kus ei kõige olema kõigi.

EMOTSIOON

EMOTSIOON

REET, 35 aastane koduparemaine 5 väljakupa emu

eltul iguald-värelise, asemel levamaks?
Mis oleks teinud kulgemise mugavamaks ning TEGEVUSE KULUNUD AEG
füüsilised objektid, abivahendid, info jmt
KOKKUPUUTEPUNKTID KESKKONNAS
TEGEVUS
TEEKOND: "SPA"

vaegnägija, liigub koera ning liigub saatjaga liikumispuudega (ratastoolis)
Seljavigastuse ratastoolis EERO,
vene emakeel JELENA,
naispensionär ELVI,
3 väikelapse ema—
aastane koduperenaine

liinid orienteerumi
sildid ja viidad. Juht
kontrastseks, samuti
gustada. Uksepiidad
avanemisruum val
orienteerumiseks.

Kaldteed, lift, piisav
lükanduks, mis rea
ega märg.

Uks peaks olema
vitavalt automaatselt
* * * * * * *

* * * * * * *

koerale.

reljeefsed. Ooteruum
suured, kontrastsed,
seterminal madala
tatud! Lett osaliselt

* * * * * * *

kaardimakseterminal
madalam osa, samuti
mise võimalus.

Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.
Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Liikumisprügikastid ja
kõrre jmt kohta. Riidekapi
põrandaliistude, mööbli, prügikastil
kontrastset värvi. Sama
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.

Sama mööbli, prügikastide
eesruum. Uksepiidad võiksid
saatjaga tegutsemiseks.
Karkude toeta
osta kõrre sisse mahtuda.
Era käetugi ka teisel
juhtliinid orienteerumiseks.
EMOTSION

REET, 55 aastane kodupereaine 5-vikaksed omad

ELVI, naistepensionär

JELINA, ajutis liikumisjuht, vene omakse

EERO, taksosõiduasja ratastoolis liiklaja, uildade ise autoga

MARTIN, vaenajana ajutise liikumisjuhtimisele (taksosõitja) ning liigupasastu
gena

KRISTINA, vaenajana, liigup koera või valge koera

PARANDUSSETTEPANEKUD

Internetist otsin telefon finnumbri. Täiisse tuve perega minuses suurema auto s 6-7 valikul, mitu autobussis.


Riistume ning kogu ajal ja teedetees õiguritavat kasutama ka kõrvastust. Seetõttu määratub rada ja karvastatud kasutusi.

Tõi on turvatoolis, aga ilmselt vajalikud ehitada õiguritavat kasutama ka kõrvastust. Seetõttu määratub rada ja karvastatud kasutusi.

Seetõttu pead tõetutud liikumiseks ja ettevaatavat elusi jahata. Olen juus ja sildad ehitada valmis. Palun vasakud maha ja saadad jutu.

Lastele on used emotsioonid ning kogu on midagi nõu. Takapajul on omedalt olnud seda hõivatud.

Elanistan maksta kaardiga. Sula raha kaasutan vaga vahe.


Vajame suuremad sisemospaa ehitamiseks.
<table>
<thead>
<tr>
<th>TEEKOND: „TEATER”</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Põletat on vaja olla kutsub päevakuus.</td>
<td>Kui</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Internet, telefon,</td>
<td>ülevaate või muu osa punkt</td>
<td>5 min</td>
<td>1</td>
<td>1</td>
<td>min</td>
<td>3</td>
<td>0,5</td>
<td>min</td>
<td>3</td>
<td>0 min</td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEKVUS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tüübi valemisest</td>
<td>&amp; 1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Tüübi kontrollimise</td>
<td>&amp;</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>ülevaate või muu osa punkt</td>
<td>&amp;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet, telefon,</td>
<td>&amp;</td>
<td>5 min</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMOTSIOON</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeldivaks</td>
<td>&amp;</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Mis oleks teinud kulgemise mugavamaks ning</td>
<td>&amp;</td>
<td>5 min</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REET</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 aasta kodugenera</td>
<td>&amp;</td>
<td>&amp;</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5 Vähendas on</td>
<td>&amp;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELVI</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>natsionäär</td>
<td>&amp;</td>
<td>&amp;</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JELINA</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ajutine ilukümnapaus</td>
<td>&amp;</td>
<td>&amp;</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>vene esmakord</td>
<td>&amp;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EERO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>anjaarvastasega restaatoni lisajooks,</td>
<td>&amp;</td>
<td>&amp;</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>voolajõe esmakord</td>
<td>&amp;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MARTIN</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>vaapneja ajutine ilukümnapaus</td>
<td>&amp;</td>
<td>&amp;</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>restaatoni ning liikliku Jaanika</td>
<td>&amp;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KRISTIINA</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>vaapneja,</td>
<td>&amp;</td>
<td>&amp;</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>õisõjakalde</td>
<td>&amp;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARANDUSETTEPANEKUD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misiklisadele moodust</td>
<td>&amp;</td>
<td>&amp;</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Misiklisadele moodust</td>
<td>&amp;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Keskonnas**
füüsilised objektid, abivahendid, info jms.

---

**KOKKUPUUTE PUNKTID**

**TEGEVUS**

**KOKKUPUUTEPUNKTID**

**KESKKONNAS**

---

**TEGVUSEKS KULUNUD AEG**

---

**EMOTSIOON**

---

<table>
<thead>
<tr>
<th>TEEKOND</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>REET</td>
<td></td>
</tr>
<tr>
<td>ELVI</td>
<td></td>
</tr>
<tr>
<td>JELENA</td>
<td></td>
</tr>
<tr>
<td>EERO</td>
<td></td>
</tr>
<tr>
<td>MARTIN</td>
<td></td>
</tr>
<tr>
<td>KRISTIINA</td>
<td></td>
</tr>
<tr>
<td>PARANDUSE TEPANEKUD</td>
<td></td>
</tr>
</tbody>
</table>

---

**PARANDUSE TEPANEKUD**
Mõistes tarnete paavast?
Miks sellest tunnetud kulgemise mugavamaks/ mõõdetavamaks?

---

**Kõiki kaasava elukeskkonna kavandamine & loomine**